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• Pierre Collet (CPHT, École Polytechnique)
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The question: Inference in (population) biology

DATA

PATTERNS

PROCESSES

MODELS

Information about the world from data?
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Examples: Genetic diversity and demography reconstruction
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Examples: Species diversity and processes

Barro Colorado Island
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Limits to inference

• Models much simpler than natural populations

• Models very complex (many parameters)

• Several processes can give similar patterns

• No clues from the past (most often)

(no idea of initial conditions)

• No independent data to validate inference

(except from computer simulations but ... circularity issues)

• Big data but little information (autocorrelation, non-independence)

...
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What can we infer from the simplest population system?

• bacteria (clonal, relatively simple)

• individual count (exact dynamics data)

• homogeneous environment

• few individuals (no competition)

• small timescale (no mutation, no trait evolution)

• controlled experiment (repeatability)

• Direct observations are possible

...

→ A simple birth-death model.
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Coates et al. 2018’s Experiment

Protocol

• Inoculation of colonies on plates with a single cell

• Picture every ∼ 10 mins

• Rich medium

• Automatized cell count

• Three types of medium:

1. Antibiotics-free (control)

2. Bacteriostatic (slows down or stops bacteria growth and division)

3. Bactericidal (kills bacteria)

What we want to know:
Can we recover that antibiotics differently affect

• the individual birth rate

• the individual death rate
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Movies
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Data: population dynamics
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Inference from a pure birth model (Yule’s process)

The model

• Xt : the number of cells at time t

• b: cell birth rate

• ∆t: the time frame between observations

Distribution: Negative binomial

P(Xt+∆t − Xt = k|Xt = n) =
(
n+k−1
n−1

)
pn(1− p)k

with p = e−b∆t

Method: Exact Likelihood

L(b) =
∑

i logP(Xti − Xti−1 = ki |Xti−1 = ki−1, b)

with

- ki the number of cells in observation i

- ti the time of observation i
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Inference from a pure birth model (Yule’s process)

Results

• Control (no antibiotics): b̂ = 0.023

(AIC: 801.8, BIC: 804.7)

• Chloramphenicol (bacteriostatic): b̂ = 0.014

(AIC: 1082.8, BIC: 1085.7)

• Cefsulodin (bactericidal, supercritical): b̂ =?

(Likelihood not defined)

• Cefsulodin (bactericidal, subcritical): b̂ =?

(Likelihood not defined)

Direct observations
Cell division rate: 0.025 min.−1 (Minsu Kim, pers. comm.)
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Inference from a linear birth-death model

The model

• Xt : the number of cells at time t

• b: cell birth rate

• d : cell death rate

• γ = b + d : an allometry parameter scaling demographic rates

• ∆t: the time frame between observations

• Assumption: b and d , and the population size, scale with K →∞

SDE Approximation (e.g. Bansaye & Méléard 2015

dXt = (b − d)Xtdt +
√

2γXtdBt
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Inference from a linear birth-death model

Discretization with an Euler’s scheme
Xt+∆t − Xt = (b − d)Xt∆t +

√
2(b + d)Xt (Bt+∆t − Bt)

Method: Likelihood aproximation in an Euler’s Scheme

L(b, d) = − 1
2

(∑
i

(Xti
−Xti−1

−(b−d)Xti−1
∆ti)

2

2(b+d)Xti−1
∆ti

)
+
∑

i log(4π(b + d)Xti ∆ti )

Algorithm

• R package MsdeParEst from Delattre et al 2016

• Mixed effect in the drift part

• Fixed effect in the diffusion part
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Results

• Control (no antibiotics): b̂ = 0.039 and d̂ = 0.016

(AIC: 864.9, BIC: 866.1)

• Chloramphenicol (bacteriostatic): b̂ = 0.016 and d̂ = 0.002

(AIC: 902.7, BIC: 902.6)

• Cefsulodin (bactericidal, supercritical): b̂ = 0.023 and d̂ = 0.017

(AIC: 297.3, BIC: 299.9)

• Cefsulodin (bactericidal, subcritical): b̂ = 0.007 and d̂ = 0.008

(AIC: 170.9, BIC: 173.5)
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Issues from the models

Model Medium Rates estimate Growth rate

Pure Birth

(AIC: 801) Control b̂ = 0.023 0.023

(AIC: 1083) Bacteriostatic b̂ = 0.014 0.014

— Bactericidal (supercritical) — —

— Bactericidal (subcritical) — —

Birth-Death

(AIC: 865) Control b̂ = 0.039, d̂ = 0.016 0.023

(AIC: 903) Bacteriostatic b̂ = 0.016, d̂ = 0.002 0.014

(AIC: 297) Bactericidal (supercritical) b̂ = 0.023, d̂ = 0.017 0.006

(AIC: 171) Bactericidal (subcritical) b̂ = 0.007, d̂ = 0.008 -0.001
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Issues from the data

• No extinction before first

observation

→ Observations conditional on

survival

→ Observation bias
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Issues from the interpretation

• Population clearly spatialized

• Competition between individuals

• Medium certainly not homogeneous, not constant

• Cells growth before division: multiscale models?

→ interpretation of b̂ and d̂?
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Probability of extinction: unexplained

• Pure birth model: P(extinction|X0 = 1) = 0

• (supercritical) Birth-Death model : P(extinction|X0 = 1) = d
b
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Perspectives

• Even simpler biological systems?

• Include conditional on survival?

• Include observations protocol and apparels into models?

• More informative statistics?

• (a priori) Choice of the scale of observation?

(why not focusing on a single cell?)

• (a priori) Choice of the relevant processes?

(why not bacteria movement?)

• Time is exponential in models, can we test this?

• Inherent and unsurpassable limits?
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The remaining question

Most relevant model to estimate b and d on such data?
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