Are there limits to inference in the simplest ecological models?

Some thoughts and speculations

Sylvain Billiard

Université de Lille - France - Lab. Evo-Eco-Paléo - UMR CNRS 8198

After many discussions with probabilists and statisticians

- Vincent Bansaye (CMAP, École Polytechnique)
- Éliza Vergu (INRA Jouy-en-Josas)
- Jean-René Chazottes (CPHT, École Polytechnique)
- Maud Delattre (AgroParisTech)
- Chi Tran (Université Gustave Eiffel)
- Nicolas Champagnat (Institut E. Cartan, INRIA)
- Peter Czuppon (University of Muenster)
- Sylvie Méléard (CMAP, École Polytechnique)
- Pierre Collet (CPHT, École Polytechnique)
- ...

PATTERNS

DATA

PROCESSES

Information about the world from data?

Examples: Genetic diversity and demography reconstruction

African genetic diversity and adaptation inform a precision medicine agenda
Luisa Pereira ${ }^{1,2}$, Leon Mutesa $)^{3}$. Paulina Tindana ${ }^{4}$ and Michèle Ramsay $9^{5 \times 4}$

Examples: Species diversity and processes

Barro Colorado Island

A test of the unified neutral theory of biodiversity

Brian J. McGill

Limits to inference

- Models much simpler than natural populations
- Models very complex (many parameters)
- Several processes can give similar patterns
- No clues from the past (most often) (no idea of initial conditions)
- No independent data to validate inference (except from computer simulations but ... circularity issues)
- Big data but little information (autocorrelation, non-independence)

What can we infer from the simplest population system?

- bacteria (clonal, relatively simple)
- individual count (exact dynamics data)
- homogeneous environment
- few individuals (no competition)
- small timescale (no mutation, no trait evolution)
- controlled experiment (repeatability)
- Direct observations are possible
\rightarrow A simple birth-death model.

Antibiotic-induced population fluctuations and stochastic clearance of bacteria

Jessica Coates ${ }^{1 \dagger}$, Bo Ryoung Park ${ }^{2 \dagger}$, Dai Le ${ }^{2}$, Emrah Şimşek ${ }^{2}$, Waqas Chaudhry ${ }^{2}$, Minsu Kim ${ }^{1,2,3 *}$

Coates et al. 2018's Experiment

Protocol

- Inoculation of colonies on plates with a single cell
- Picture every ~ 10 mins
- Rich medium
- Automatized cell count
- Three types of medium:

1. Antibiotics-free (control)
2. Bacteriostatic (slows down or stops bacteria growth and division)
3. Bactericidal (kills bacteria)

What we want to know:

Can we recover that antibiotics differently affect

- the individual birth rate
- the individual death rate

Movies

Data: population dynamics

Inference from a pure birth model (Yule's process)

The model

- X_{t} : the number of cells at time t
- b : cell birth rate
- Δt : the time frame between observations

Distribution: Negative binomial

$$
\begin{aligned}
& \mathbb{P}\left(X_{t+\Delta t}-X_{t}=k \mid X_{t}=n\right)=\binom{n+k-1}{n-1} p^{n}(1-p)^{k} \\
& \text { with } p=e^{-b \Delta t}
\end{aligned}
$$

Method: Exact Likelihood

$$
\mathcal{L}(b)=\sum_{i} \log \mathbb{P}\left(X_{t_{i}}-X_{t_{i-1}}=k_{i} \mid X_{t_{i-1}}=k_{i-1}, b\right)
$$

with

- k_{i} the number of cells in observation i
- t_{i} the time of observation i

Inference from a pure birth model (Yule's process)

Results

- Control (no antibiotics): $\widehat{b}=0.023$ (AIC: 801.8, BIC: 804.7)
- Chloramphenicol (bacteriostatic): $\widehat{b}=0.014$ (AIC: 1082.8, BIC: 1085.7)
- Cefsulodin (bactericidal, supercritical): $\widehat{b}=$?
(Likelihood not defined)
- Cefsulodin (bactericidal, subcritical): $\widehat{b}=$? (Likelihood not defined)

Direct observations
Cell division rate: $0.025 \mathrm{~min} .^{-1}$ (Minsu Kim, pers. comm.)

Inference from a linear birth-death model

The model

- X_{t} : the number of cells at time t
- b : cell birth rate
- d: cell death rate
- $\gamma=b+d$: an allometry parameter scaling demographic rates
- Δt : the time frame between observations
- Assumption: b and d, and the population size, scale with $K \rightarrow \infty$

SDE Approximation (e.g. Bansaye \& Méléard 2015
$d X_{t}=(b-d) X_{t} d t+\sqrt{2 \gamma X_{t}} d B_{t}$

Inference from a linear birth-death model

Discretization with an Euler's scheme
$X_{t+\Delta t}-X_{t}=(b-d) X_{t} \Delta t+\sqrt{2(b+d) X_{t}}\left(B_{t+\Delta t}-B_{t}\right)$
Method: Likelihood aproximation in an Euler's Scheme
$\mathcal{L}(b, d)=-\frac{1}{2}\left(\sum_{i} \frac{\left(X_{t_{i}}-X_{t_{i-1}}-(b-d) X_{t_{i-1}} \Delta t_{i}\right)^{2}}{2(b+d) X_{t_{i-1}} \Delta t_{i}}\right)+\sum_{i} \log \left(4 \pi(b+d) X_{t_{i}} \Delta t_{i}\right)$
Algorithm

- R package MsdeParEst from Delattre et al 2016
- Mixed effect in the drift part
- Fixed effect in the diffusion part

Results

- Control (no antibiotics): $\widehat{b}=0.039$ and $\widehat{d}=0.016$ (AIC: 864.9, BIC: 866.1)
- Chloramphenicol (bacteriostatic): $\widehat{b}=0.016$ and $\widehat{d}=0.002$ (AIC: 902.7, BIC: 902.6)
- Cefsulodin (bactericidal, supercritical): $\widehat{b}=0.023$ and $\widehat{d}=0.017$ (AIC: 297.3, BIC: 299.9)
- Cefsulodin (bactericidal, subcritical): $\widehat{b}=0.007$ and $\widehat{d}=0.008$ (AIC: 170.9, BIC: 173.5)

Issues from the models

Model	Medium	Rates estimate	Growth rate
Pure Birth	Control	$\widehat{b}=0.023$	0.023
(AIC: 801)	Bacteriostatic	$\widehat{b}=0.014$	0.014
(AIC: 1083)	Bactericidal (supercritical)	-	-
-	Bactericidal (subcritical)	-	-
Birth-Death	Control	$\widehat{b}=0.039, \widehat{d}=0.016$	0.023
(AIC: 865)	Bacteriostatic	$\widehat{b}=0.016, \widehat{d}=0.002$	0.014
(AIC: 903)	Bactericidal (supercritical)	$\widehat{b}=0.023, \widehat{d}=0.017$	0.006
(AIC: 297)	$\widehat{b}=0.007, \widehat{d}=0.008$	-0.001	
(AIC: 171)	Bactericidal (subcritical)		

Issues from the data

- No extinction before first observation
\rightarrow Observations conditional on
survival
\rightarrow Observation bias

Issues from the interpretation

- Population clearly spatialized
- Competition between individuals
- Medium certainly not homogeneous, not constant
- Cells growth before division: multiscale models?
\rightarrow interpretation of \widehat{b} and \widehat{d} ?

Probability of extinction: unexplained

- Pure birth model: $P\left(\right.$ extinction $\left.\mid X_{0}=1\right)=0$
- $($ supercritical $)$ Birth-Death model : $P\left(\right.$ extinction $\left.\mid X_{0}=1\right)=\frac{d}{b}$

Perspectives

- Even simpler biological systems?
- Include conditional on survival?
- Include observations protocol and apparels into models?
- More informative statistics?
- (a priori) Choice of the scale of observation? (why not focusing on a single cell?)
- (a priori) Choice of the relevant processes? (why not bacteria movement?)
- Time is exponential in models, can we test this?
- Inherent and unsurpassable limits?

The remaining question

Most relevant model to estimate b and d on such data?

Acknowledgements

Minsu Kim (for sharing data)
Maud Delattre (for her help with parameter estimations from the SDE)
The Organizers

