Are there limits to inference in the simplest
ecological models?

Some thoughts and speculations

Sylvain Billiard

Université de Lille - France - Lab. Evo-Eco-Paléo - UMR CNRS 8198



After many discussions with probabilists and statisticians

e Vincent Bansaye (CMAP, Ecole Polytechnique)

e Eliza Vergu (INRA Jouy-en-Josas)

e Jean-René Chazottes (CPHT, Ecole Polytechnique)
e Maud Delattre (AgroParisTech)

e Chi Tran (Université Gustave Eiffel)

e Nicolas Champagnat (Institut E. Cartan, INRIA)

e Peter Czuppon (University of Muenster)

e Sylvie Méléard (CMAP, Ecole Polytechnique)

e Pierre Collet (CPHT, Ecole Polytechnique)



The question: Inference in (population) biology
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Information about the world from data?



Examples: Genetic diversity and demography reconstruction

African genetic diversity and
adaptation inform a precision
medicine agenda

Luisa Pereira', Leon Mutesa®*, Paulina Tindana* and Michéle Ramsay(>*®
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Examples: Species diversity and processes

Barro Colorado Island

A test of the unified neutral

theory of biodiversity

Brian J. McGill
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Limits to inference

Models much simpler than natural populations

Models very complex (many parameters)

Several processes can give similar patterns

No clues from the past (most often)

(no idea of initial conditions)

No independent data to validate inference

(except from computer simulations but ... circularity issues)

Big data but little information (autocorrelation, non-independence)



What can we infer from the simplest population system?

e bacteria (clonal, relatively simple)

e individual count (exact dynamics data)

e homogeneous environment

e few individuals (no competition)

e small timescale (no mutation, no trait evolution)
e controlled experiment (repeatability)

e Direct observations are possible

— A simple birth-death model.
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Antibiotic-induced population fluctuations
and stochastic clearance of bacteria
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Coates et al. 2018’s Experiment

Protocol
e Inoculation of colonies on plates with a single cell
e Picture every ~ 10 mins
e Rich medium

Automatized cell count

Three types of medium:

1. Antibiotics-free (control)
2. Bacteriostatic (slows down or stops bacteria growth and division)
3. Bactericidal (kills bacteria)

What we want to know:
Can we recover that antibiotics differently affect

e the individual birth rate

e the individual death rate






Data: population dynamics
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Inference from a pure birth model (Yule's process)

The model
e X;: the number of cells at time ¢
e b: cell birth rate

e At: the time frame between observations

Distribution: Negative binomial

P(Xesne — Xe = k| Xe = n) = (2571 p (1 — p)*

n—1
with p = e~ bAt

Method: Exact Likelihood
L:(b) = Zi IOgIP(Xt,‘ - Xt,'_1 = kf|th—1 = ki-1, b)
with
- k; the number of cells in observation i

- t; the time of observation i/
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Inference from a pure birth model (Yule's process)

Results
e Control (no antibiotics): b =0.023
(AIC: 801.8, BIC: 804.7)

e Chloramphenicol (bacteriostatic): b = 0.014
(AIC: 1082.8, BIC: 1085.7)

e Cefsulodin (bactericidal, supercritical): b=?
(Likelihood not defined)

o Cefsulodin (bactericidal, subcritical): b=1
(Likelihood not defined)

Direct observations
Cell division rate: 0.025 min.~! (Minsu Kim, pers. comm.)
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Inference from a linear birth-death model

The model
o X;: the number of cells at time t
e b: cell birth rate
e d: cell death rate
e v = b+ d: an allometry parameter scaling demographic rates
e At: the time frame between observations

e Assumption: b and d, and the population size, scale with K — oo

SDE Approximation (e.g. Bansaye & Méléard 2015

dXt = (b — d)Xtdt —+ / 2’7XtdBt
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Inference from a linear birth-death model

Discretization with an Euler’'s scheme

Xf+At - Xt = (b - d)XtAt + \/ 2(b + d)Xt (Bt+At - Bt)

Method: Likelihood aproximation in an Euler’s Scheme

Xi,—Xe_, —(b—d)X;,_, At;)’
£(b7 d) = _% (Zl ( 2(b1+d)Xf,'_1Aff - ) ) + Zi |Og(4ﬂ'(b+ d)Xt,At,)

Algorithm
e R package MsdeParEst from Delattre et al 2016
e Mixed effect in the drift part
e Fixed effect in the diffusion part
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https://cran.r-project.org/web/packages/MsdeParEst/MsdeParEst.pdf
https://hal.archives-ouvertes.fr/hal-01218612

Results
e Control (no antibiotics): b= 0.039 and d = 0.016
(AIC: 864.9, BIC: 866.1)

e Chloramphenicol (bacteriostatic): b= 0.016 and d = 0.002
(AIC: 902.7, BIC: 902.6)

e Cefsulodin (bactericidal, supercritical): b =0.023 and d = 0.017
(AIC: 297.3, BIC: 299.9)

e Cefsulodin (bactericidal, subcritical): b= 0.007 and d = 0.008
(AIC: 170.9, BIC: 173.5)
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Issues from the models

Model Medium Rates estimate Growth rate
Pure Birth
(AIC: 801) Control b =0.023 0.023
(AIC: 1083) Bacteriostatic b=0.014 0.014

— Bactericidal (supercritical) — —
— Bactericidal (subcritical) — —

Birth-Death

(AIC: 865) Control b = 0.039, d = 0.016 0.023
(AIC: 903) Bacteriostatic b =0.016, d = 0.002 0.014
(AIC: 297) | Bactericidal (supercritical) b=10.023, d =0.017 0.006
(AIC: 171) Bactericidal (subcritical) | b = 0.007, d = 0.008 -0.001
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Issues from the data
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No extinction before first
observation

— Observations conditional on
survival

— Observation bias
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Issues from the interpretation

Population clearly spatialized

Competition between individuals

Medium certainly not homogeneous, not constant

Cells growth before division: multiscale models?

— interpretation of b and d?
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Probability of extinction: unexplained

e Pure birth model: P(extinction|Xp =1) =0

e (supercritical) Birth-Death model : P(extinction|Xo = 1) = ¢
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Even simpler biological systems?

Include conditional on survival?

Include observations protocol and apparels into models?

e More informative statistics?

(a priori) Choice of the scale of observation?

(why not focusing on a single cell?)

(a priori) Choice of the relevant processes?
(why not bacteria movement?)

e Time is exponential in models, can we test this?

Inherent and unsurpassable limits?
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The remaining question

Most relevant model to estimate b and d on such data?
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