

Are there limits to inference in the simplest ecological models?

Some thoughts and speculations

Sylvain Billiard

Université de Lille - France - Lab. Evo-Eco-Paléo - UMR CNRS 8198

- Vincent Bansaye (CMAP, École Polytechnique)
- Éliza Vergu (INRA Jouy-en-Josas)
- Jean-René Chazottes (CPHT, École Polytechnique)
- Maud Delattre (AgroParisTech)
- Chi Tran (Université Gustave Eiffel)
- Nicolas Champagnat (Institut E. Cartan, INRIA)
- Peter Czuppon (University of Muenster)
- Sylvie Méléard (CMAP, École Polytechnique)
- Pierre Collet (CPHT, École Polytechnique)

• ...

The question: Inference in (population) biology

Information about the world from data?

Examples: Genetic diversity and demography reconstruction

African genetic diversity and adaptation inform a precision medicine agenda

Examples: Species diversity and processes

- Models much simpler than natural populations
- Models very complex (many parameters)
- Several processes can give similar patterns
- No clues from the past (most often) (no idea of initial conditions)
- No independent data to validate inference (except from computer simulations but ... circularity issues)
- Big data but little information (autocorrelation, non-independence)

- bacteria (clonal, relatively simple)
- individual count (exact dynamics data)
- homogeneous environment
- few individuals (no competition)
- small timescale (no mutation, no trait evolution)
- controlled experiment (repeatability)
- Direct observations are possible

 \rightarrow A simple birth-death model.

RESEARCH ARTICLE **d**

Antibiotic-induced population fluctuations and stochastic clearance of bacteria

Jessica Coates^{1†}, Bo Ryoung Park^{2†}, Dai Le², Emrah Şimşek², Waqas Chaudhry², Minsu Kim^{1,2,3}*

Coates et al. 2018's Experiment

Protocol

- Inoculation of colonies on plates with a single cell
- Picture every $\sim 10~{\rm mins}$
- Rich medium
- Automatized cell count
- Three types of medium:
 - 1. Antibiotics-free (control)
 - 2. Bacteriostatic (slows down or stops bacteria growth and division)
 - 3. Bactericidal (kills bacteria)

What we want to know:

Can we recover that antibiotics differently affect

- the individual birth rate
- the individual death rate

Data: population dynamics

10

Inference from a pure birth model (Yule's process)

The model

- X_t : the number of cells at time t
- b: cell birth rate
- Δt : the time frame between observations

Distribution: Negative binomial

$$\mathbb{P}(X_{t+\Delta t} - X_t = k | X_t = n) = \binom{n+k-1}{n-1} p^n (1-p)^k$$

with $p = e^{-b\Delta t}$

Method: Exact Likelihood

$$\mathcal{L}(b) = \sum_i \log \mathbb{P}(X_{t_i} - X_{t_{i-1}} = k_i | X_{t_{i-1}} = k_{i-1}, b)$$
 with

- k_i the number of cells in observation i
- t_i the time of observation i

Results

- Control (no antibiotics): $\hat{b} = 0.023$ (AIC: 801.8, BIC: 804.7)
- Chloramphenicol (bacteriostatic): $\hat{b} = 0.014$ (AIC: 1082.8, BIC: 1085.7)
- Cefsulodin (bactericidal, supercritical): $\hat{b} = ?$ (Likelihood not defined)
- Cefsulodin (bactericidal, subcritical): $\hat{b} = ?$ (Likelihood not defined)

Direct observations

Cell division rate: 0.025 min.⁻¹ (Minsu Kim, pers. comm.)

The model

- X_t : the number of cells at time t
- b: cell birth rate
- d: cell death rate
- $\gamma = b + d$: an allometry parameter scaling demographic rates
- Δt : the time frame between observations
- Assumption: b and d, and the population size, scale with $K
 ightarrow \infty$

SDE Approximation (e.g. Bansaye & Méléard 2015

$$dX_t = (b - d)X_t dt + \sqrt{2\gamma X_t} dB_t$$

Discretization with an Euler's scheme $X_{t+\Delta t} - X_t = (b-d)X_t\Delta t + \sqrt{2(b+d)X_t}(B_{t+\Delta t} - B_t)$

Method: Likelihood aproximation in an Euler's Scheme $\mathcal{L}(b,d) = -\frac{1}{2} \left(\sum_{i} \frac{(X_{t_i} - X_{t_{i-1}} - (b-d)X_{t_{i-1}}\Delta t_i)^2}{2(b+d)X_{t_{i-1}}\Delta t_i} \right) + \sum_{i} \log(4\pi(b+d)X_{t_i}\Delta t_i)$

Algorithm

- R package MsdeParEst from Delattre et al 2016
- Mixed effect in the drift part
- Fixed effect in the diffusion part

Results

- Control (no antibiotics): $\hat{b} = 0.039$ and $\hat{d} = 0.016$ (AIC: 864.9, BIC: 866.1)
- Chloramphenicol (bacteriostatic): $\hat{b} = 0.016$ and $\hat{d} = 0.002$ (AIC: 902.7, BIC: 902.6)
- Cefsulodin (bactericidal, supercritical): $\hat{b} = 0.023$ and $\hat{d} = 0.017$ (AIC: 297.3, BIC: 299.9)
- Cefsulodin (bactericidal, subcritical): $\hat{b} = 0.007$ and $\hat{d} = 0.008$ (AIC: 170.9, BIC: 173.5)

Model	Medium	Rates estimate	Growth rate
Pure Birth			
(AIC: 801)	Control	$\hat{b} = 0.023$	0.023
(AIC: 1083)	Bacteriostatic	$\widehat{b} = 0.014$	0.014
—	Bactericidal (supercritical)	—	
—	Bactericidal (subcritical)	—	
Birth-Death			
(AIC: 865)	Control	$\widehat{b} = 0.039, \ \widehat{d} = 0.016$	0.023
(AIC: 903)	Bacteriostatic	$\widehat{b} = 0.016, \ \widehat{d} = 0.002$	0.014
(AIC: 297)	Bactericidal (supercritical)	$\widehat{b} = 0.023, \ \widehat{d} = 0.017$	0.006
(AIC: 171)	Bactericidal (subcritical)	$\widehat{b} = 0.007, \ \widehat{d} = 0.008$	-0.001

Issues from the data

- No extinction before first observation
 - \rightarrow Observations conditional on survival
 - \rightarrow Observation bias

- Population clearly spatialized
- Competition between individuals
- Medium certainly not homogeneous, not constant
- Cells growth before division: multiscale models?

 \rightarrow interpretation of \widehat{b} and \widehat{d} ?

Probability of extinction: unexplained

- Pure birth model: $P(\text{extinction}|X_0 = 1) = 0$
- (supercritical) Birth-Death model : $P(\text{extinction}|X_0 = 1) = \frac{d}{b}$

- Even simpler biological systems?
- Include conditional on survival?
- Include observations protocol and apparels into models?
- More informative statistics?
- (a priori) Choice of the scale of observation? (why not focusing on a single cell?)
- (*a priori*) Choice of the relevant processes? (why not bacteria movement?)
- Time is exponential in models, can we test this?
- Inherent and unsurpassable limits?

Most relevant model to estimate b and d on such data?

Minsu Kim (for sharing data) Maud Delattre (for her help with parameter estimations from the SDE) *The Organizers*

