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COVID-19 (and its containment)

Timeline of the project (and motivation)

• March 2020:

• ... how large are clusters at their detection?

• October 2020:

• ... how successful is such a one-shot mass testing effort?

• December 2020:

• ... when did the variant B.1.1.7 arise?

• February 2021:

• ... can we say something about the minimal testing effort needed to

detect clusters before they are too large to control easily?
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Probability of establishment



Distribution of secondary infections

= offspring distribution

• R = average number of offspring = basic/effective reproduction

number

• κ = dispersion (measure of variance)

⇒ super-spreading (Lloyd-Smith et al. Nature (2005))
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Probability of establishment

Compute the probability of extinction pext:

pext = P(Y = 0)︸ ︷︷ ︸
no offspring

+ pextP(Y = 1)︸ ︷︷ ︸
one offspring

+ p2
extP(Y = 2)︸ ︷︷ ︸
two offspring

+p3
extP(Y = 3) + . . .

= E[pYext] = probability generating function

reproduction number R
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pestab = 1− pext

Poisson (κ→∞)

Geometric (κ = 1)

neg. Binomial (κ = 0.57)

pestab = 1− 1
R (R > 1)
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Mean epidemic size



Epidemiological model

time

infection intensity ∼ Gamma dist.

infected
individual
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Infection kernel

Infected individuals ...
• ... are characterized by their infection age a

• ... transmit the disease with rate τ(a) = R × µ(a), where µ is the

probability density of a Gamma distribution
→ parameters from Hinch et al. medRxiv preprint (2020+) –

OpenABM-Covid19 from Oxford Modeling Group

infection age a

in
fe

ct
io

n
ra

te
τ

(a
)
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Simulations (R = 1.3, Poisson offspring distribution)

time t

ep
id

em
ic

si
ze

• • = simulation mean

• dark shade = 50% inter-quantile range

• light shade = 90% inter-quantile range
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Mean epidemic size

• I (t) = mean epidemic size of the individual-based process

Renewal equation:

I (t) = I (0) +

∫ t

0

I (t − a)τ(a)da

How to think about this equation?

• I (t − a) is the mean cluster size of a cluster that emerged at time a

• ... this happens at rate τ(a)

In a discrete world:

I (1) = I (0) + τ(1)I (0)

I (2) = I (0) + τ(1)I (1) + τ(2)I (0)

I (3) = I (0) + τ(1)I (2) + τ(2)I (1) + τ(3)I (0)︸ ︷︷ ︸
the integral in continuous time
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Initial growth - stochastic correction

Underestimation because we do not take into account that the epidemic

establishes! (mean also reflects non-establishing epidemics)

Solution: conditioning on non-extinction in the infection rates

→ Method: Doob’s h-transform (Doob (1957))

τ̃(a, t) = τ(a)

(
1− pext(0)

∏N(t)
j=1 pext(aj)

1−
∏N(t)

j=1 pext(aj)

)
,

where N(t) = the number of infected individuals in the stochastic

process and

pext(a) = pext(0) exp

(
(1− pext(0))

∫ a

0

τ(s)ds

)
is the extinction probability of an epidemic that started with an infected

individual at age a.

Caveat: This only works nicely in the case of a Poisson offspring

distribution.
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Simulations (R = 1.3, Poisson offspring distribution)

time t

ep
id

em
ic

si
ze

• • = simulation mean

• dark shade = 50% inter-quantile range

• light shade = 90% inter-quantile range

I (t) = I (0) +
∫ t

0
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Ĩ (t) = I (0) +
∫ t

0
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Summary of the theory

• Establishment probability depends on the offspring distribution

⇒ the larger the variance, the smaller the establishment probability

⇒ a reasonable proxy is 1/R0

• Epidemic size is described by a renewal equation

I (t) = I (0) +

∫ t

0

I (t − a)τ(a)da

• To account for initial stochasticity, the infection measure τ(a) can

be corrected by conditioning the stochastic process on

establishment

13



Detection time and size



Epidemiological model with detection

time
infection intensity ∼ Gamma dist.

infected
individual

D
detection prob. pdetect

D
tdetect ∼ Gamma
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How long does it take to

detect the first case?

14



Time of the first detection

• Number of infected individuals until the first one will be detected =

K ∼ Geom(pdetect)

Approximation procedure of the first detection time:

1. estimate deterministic time tK so that Ĩ (tK ) = K

2. add the waiting time until detection:

first detection = tK + tdetect︸ ︷︷ ︸
∼Gamma

3. probability density of the first detection time (analytical

prediction):

h(t) =
∞∑

K=1

pdetect (1− pdetect)
K−1︸ ︷︷ ︸

geometric dist.

fdetect(t − tK )︸ ︷︷ ︸
Gamma dist.
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Example: First hospitalization time

• Hospitalization probability: pdetect = 0.029 (Salje et al. Science (2020))

• Time from infection to hospitalization: Gamma(31,0.463) (mean =

14.4 days) (Foutel-Rodier arXiv preprint (2020+))

• reproduction number: R = 2.7 (March 2020 in France)

Poisson case

Negative binomial case

first hospitalization time

pr
ob

ab
ili

ty
d

en
si

ty analytical
prediction

analytical
mean

simulation
mean

16



Example: First hospitalization time

• Hospitalization probability: pdetect = 0.029 (Salje et al. Science (2020))

• Time from infection to hospitalization: Gamma(31,0.463) (mean =

14.4 days) (Foutel-Rodier arXiv preprint (2020+))

• reproduction number: R = 2.7 (March 2020 in France)

Poisson case

Negative binomial case

first hospitalization time

pr
ob

ab
ili

ty
d

en
si

ty analytical
prediction

analytical
mean

simulation
mean

16



Example: Variant B.1.1.7

• detection probability = sampling rate in the UK in September 2020

= 0.0105 (according to COVID-19 Genomics Consortium UK + underreporting

rate in Colman et al. medRxiv (2021+))

• reproduction number of the variant = 1.5 (Volz et al. medRxiv (2021+))

• time from infection to sampling: Gamma(12,7/12) (mean: 7 days)

first sampling time

pr
ob

ab
ili

ty
d

en
si

ty analytical
prediction

analytical
mean

simulation
mean

⇒ Variant B.1.1.7 emergence around the 4th of August 2020
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How large is the epidemic

cluster at the first

detection?

17



Size of the first detection

The probability distribution of the size of the epidemic cluster at its first

detection is

P(size at detection = k) =

∫ ∞
0

h(t)1Ĩ (t)∈[k−1/2,k+1/2]dt

Example: Size at first hospitalization

Poisson caseNegative binomial case

cluster size at detection

pr
ob

ab
ili

ty
d

en
si

ty analytical
prediction

analytical
mean

simulation
mean
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Testing



What is the minimal

random testing frequency

to detect clusters before

they exceed a certain

threshold size?

18



Probability of infected individuals to test positive

• Probability to test positive, e.g. by a rapid test, depends on infection

age a of the tested individual (Hellewell et al. BMC Medicine (2021))

• Denote this probability by Q(a)

infection age a

pr
ob

.
of

te
st

in
g

p
os

it
iv

e
Q

(a
)
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Minimal testing frequency to detect clusters of a certain size

Assumption: Individuals in a population (susceptibles and infecteds) are

randomly tested, independently of their infection status

• f = fraction of individuals that is tested per day

• Infected individual is detected with probability

pdetect = 1−
∞∏
a=1

(1− fQ(a))︸ ︷︷ ︸
prob. of not being detected at age a

≈ f
∞∑
a=1

Q(a)

• Now apply the results from before (size of a cluster at its first

detection) and ‘solve’ (numerically) for the minimal value of f

20
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Minimal testing frequency and resulting cluster size (R = 1.1)

daily testing frequency f

cl
u

st
er

si
ze

at
d

et
ec

ti
on

In numbers: threshold size of 30 ⇒ f = 0.013

• France: ∼ 870,000 tests per day (currently ∼ 320,000)

• Germany: ∼ 1,080,000 tests per day (currently ∼ 185,000)

• (according to data from ECDC) 21



Conclusion



Conclusion

• Renewal equation derived from the stochastic process conditioned

on establishment is a good description of the epidemic size

• Probability distribution of the first detection time depends on

offspring distribution, the epidemic parameters and most importantly

on the detection probability per infected individual

⇒ Variant of concern B.1.1.7 most likely started circulating early

August

• The probability distribution of the size of a cluster at its first

detection is right-skewed (geometric?)

• The minimal testing frequency to detect clusters can be

approximated by combining the probability to test positive with the

detection probability

⇒ might be relevant in a Zero-Covid-scenario

22
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Open questions (at least to me)

• Is there a way to estimate the variance of the limit process

(something like a central limit theorem for the convergence of the

conditioned individual-based model to the McKendrick-von Foerster

equation)

• Or alternatively: the variance of the asymptotic growth rate of the

super-critical branching process?

time t

ep
id

em
ic

si
ze
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Questions?

Thank you for your

attention!
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Exponential growth, asymptotic growth

The exponential growth rate (r) of the epidemic is computed as follows

1 =

∫ ∞
0

e−raτ(a)da = R

∫ ∞
0

e−raµ(a)da

The asymptotic growth rate of the epidemic can be derived from the

renewal equation and is

I (t) = I (0)
ert

r
∫∞

0
Re−raaµ(a)da

for t →∞

The ‘corrected’ asymptotic growth rate is

I (t) =
I (0)

pestab

ert

r
∫∞

0
Re−raaµ(a)da

for t →∞



Asymptotic growth (R = 1.3)
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The exponential growth implies that the stationary infection age

distribution is an exponential distribution with parameter r .



Doob’s h-transform

Infinitesimal generator of the original process:

Lf (a) =

|a|∑
i=1

[
τ(ai )

(
f ((a, 0))− f (a)

)
+ ∂i f (a)

]
Probability of extinction of a cluster seeded by a single infected individual

with infection age a (and Poisson offspring distribution):

p(a) = p(0) exp

(
(1− p(0))

∫ a

0

τ(s)ds

)
Harmonic function for the infinitesimal generator:

h(a) := 1−
|a|∏
i=1

p(ai ) ⇒ Lh(a) = 0

The infinitesimal generator of the transformed process is then given by:

L̃f =
1

h
L(fh)



Detection rate of a single mass testing effort

How many infected individuals can be detected by a single mass testing

effort, as for example performed in Slovakia in fall 2020?

Approximation:

• Assumption: infection age distribution has reached stationarity

• Detection probability is given by Q(a)

• Proportion of detection among the (cumulative) infected individuals:

Idetected(t) = qI (t) = I (t)

∫ ∞
0

Q(a)re−rada

• R = 1.3: q = 0.54 (with rapid tests: q = 0.26)

• R = 2.7: q = 0.71 (with rapid tests: q = 0.26)



Detection rate of a single mass testing effort

How many infected individuals can be detected by a single mass testing

effort, as for example performed in Slovakia in fall 2020?

Approximation:

• Assumption: infection age distribution has reached stationarity

• Detection probability is given by Q(a)

• Proportion of detection among the (cumulative) infected individuals:

Idetected(t) = qI (t) = I (t)

∫ ∞
0

Q(a)re−rada

• R = 1.3: q = 0.54 (with rapid tests: q = 0.26)

• R = 2.7: q = 0.71 (with rapid tests: q = 0.26)



Varying the detection probability of B.1.1.7
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• shaded region = 50% inter-quantile range

• dashed line = 5- and 95-percentile
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