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Some informations on malaria disease

I eliminated in the 1950s in America and in the 1970s in Europe

I 219 million of malaria cases worldwide in 2017

I 435,000 deaths in 2017

I 61% are children under the age of 5

I no significant progress towards a decrease in the number of
malaria cases worldwide between 2015-2017



Malaria in the world



Propagation of malaria



Focus on the Jimma zone



16 villages in Gilgel Gibe dam region

Figure: Gilgel-Gibe hydroelectric dam, study villages and households
(Getachew et al. (2013))



Objectives

=⇒ quantify the effect of the dam on malaria propagation

=⇒ propose a model taking into account distance to dam and
distance between individuals
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Context of survival analysis

Consider an event of interest in a population of individuals

Denote by Ti the time to event of individual i

Examples :

I time to infection

I time to death

I time to flowering date

I time till recovering a job after unemployment

I ...



Survival function, hazard, Cox model (Cox (1972))

Survival function of individual i : Si (t) = P(Ti ≥ t).

Hazard of individual i :

λi (t) = lim
dt→0+

P(t ≤ Ti < t + dt|Ti ≥ t)

dt

Thus

Si (t) = exp

(
−
∫ t

0
λi (s)ds

)
Cox model:

λi (t) = λ0(t) exp(X ′i β)

with λ0 unknown baseline,
Xi covariates vector of individual i ,
β unknown parameters vector of interest.



Proportional hazards assumption in Cox model
Si (t) = exp

(
−
∫ t

0 λi (s)ds
)

and λi (t) = λ0(t) exp(X ′i β)

leads to log(− log Si (t)) = X ′i β + log
(∫ t

0 λ0(s)ds
)
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Figure: Plot of t → log(− log(S(t)) in red for group 1 and in blue ofr
group 2.



Frailty model (Vaupel et al. (1979))

Idea : model heterogeneity in population through random effects

Examples :

I clinical study in several centers

I crop on several parcels and several environmental conditions

I ...

Denote by i the indice of the group
and by j the indice of the individual,

Model the hazard by: λij(t|bi ) = λ0(t) exp(X ′ijβ + bi )

with Xij covariates of individual j of group i ,
λ0 unknown baseline function,
β unknown parameters vector
bi random effect of group i .



Spatially correlated univariate frailty model

=⇒ introduce spatial correlation in the frailty term at subject level

Model the hazard as follows:

λi (t|bi ) = λ0(t) exp(X t
i β + bi ) (M1)

where λ0 is the baseline hazard function,
Xi covariates vector
β the vector of the unknown regression parameters,
bi the frailty term of subject i

and model the frailty vector b = (bi )1≤i≤N as follows:

b ∼ N (0, σ2Σ(ρ)).

with σ2 scaling factor
and Σ(ρ) correlation matrix parameterized by ρ > 0



Different correlation structures and baseline function

=⇒ consider two usual different correlation structures
following Li and Ryan (2002)

Σexp(ρ) = exp(−ρD)

Σpol(ρ) =
1

1 + Dρ

with D = (dii ′ ) ∈MN(R+)

and dii ′ the distance between subject i and subject i
′
.

=⇒ consider usual parametric baseline hazard function
parametrized by α

=⇒ Model parameters are θ = (α, β, σ2, ρ).



Censoring in survival analysis

I Ti time to event

I Ci censoring time

=⇒ (Ti ) and (Ci ) non observed

Available observations:

I Yi = Ti ∧ Ci censored observation

I ∆i = 1Ti≤Ci
censoring indicator



Maximum marginal likelihood estimation

θ = (α, β, σ2, ρ)

Complete likelihood expression:

Lcomp(θ; Y,∆,b) =
N∏
i=1

(
(λ0(Yi ) exp(X t

i β + bi ))∆i

exp(Λ0(Yi ) exp(X t
i β + bi ))

)
fσ2Σ(ρ)(b)

where Λ0(Yi ) =
∫ Yi

0 λ0(t)dt is the cumulative hazard function

Marginal likelihood expression:

Lmarg(θ; Y,∆) =

∫
Lcomp(θ; Y,∆,b)db

Maximum marginal likelihood estimate:

θ̂ = argmax Lmarg(θ; Y,∆).



Estimation in frailty models

I approximated likelihood criteria
I penalized likelihood (McGilchrist et al. (1991))
I partial likelihood (Nielsen et al. (1992))
I partial penalized likelihood (Therneau et al. (2000))
I complete penalized likelihood (Rondeau et al. (2003))

I bayesian (Ducrocq et Casella (1996))
I exact likelihood

I EM algorithm
I Monte Carlo EM (prop. Wei et al. (1990), frailty. Ripatti et

al. (2002)) theory Fort et Moulines (2003))
=⇒ long computation times

I EM-Laplace (Abrahantes et Burzykowski (2005)
=⇒ no convergence property



EM algorithm (Dempster et al. (1977))

=⇒ deal with estimation in latent variable model
Iteration k :

Step E : compute

Q(θ|θk) = E(log Lcomp(Y,∆,b; θ)|Y,∆, θk)

Step M : update
θk+1 = arg maxQ(θ|θk) .

=⇒ convergence toward a critical point of marginal likelihood
=⇒ drawback: step E may be intractable



Stochastic approximation EM with MCMC method

(Delyon et al. (1999), Kuhn et al. (2004),
Allassonnière et al. (2010))
Iteration k :

Simulation step : bk+1 ∼ Πθk (bk , ·) with Πθ transition kernel of
ergodic Markov chain having as stationnary
distribution the posterior distribution πθ(b|Y,∆).

Stochastic approximation step :

Qk+1(θ) = Qk(θ)+γk

(
log Lcomp(Y,∆,bk+1; θ)−Qk(θ)

)
,

with (γk)k positive step sizes s.t.
∑
γk =∞,∑

γ2
k <∞

Update step :
θk+1 = arg maxQk+1(θ)

=⇒ a.s. convergence toward a critical point of marginal likelihood



Some heuristic

Qk+1(θ) = Qk(θ) + γk

[
log Lcomp(Y,∆,bk+1; θ)− Qk(θ)

]
Qk+1(θ)− Qk(θ)

γk
= {E [log Lcomp(Y,∆,b; θ)|Y,∆; θ]− Qk(θ)}

+
{

log Lcomp(Y,∆,bk+1; θ)− E [log Lcomp(Y,∆,b; θ)|Y,∆; θ]
}

Qk+1(θ)− Qk(θ)

γk
≈{E [log Lcomp(Y,∆,b; θ)|Y,∆; θ]− Qk(θ)}+ ek

with ek little centered perturbation.



Simulation study
=⇒ mimic the malaria data (Getachew et al. (2013))
Model (M1)

λi (t|bi ) = λ0(t) exp(X t
i β + bi ) and b ∼ N (0, σ2exp(−ρD))

I N = 300 subjects
I D is chosen by taking subsets of size 300 of the real malaria

distance matrix.
I piecewise constant baseline

∑3
m=1 λm1[τm−1,τm[(t)

with (τ0, τ1, τ2, τ3) = (0, 0.2, 0.8,+∞),
(λ1, λ2, λ3) = (2, 0.5, 1)

I Xi
iid∼ B(0.5)

I β = (2, 3)
I (σ2, ρ) = (1.5, 1)
I 3 different censoring settings: no censoring, moderate

censoring (40%) and heavy censoring (60%)

=⇒ use random scan Gibbs sampler to face the high dimension of
frailty vector



Effect of censoring rate

Table: Mean of the parameter estimates and empirical standard error in
parentheses estimated in model (M1) from 100 repetitions with data
generated under model (M1). The number of subjects N is fixed at 300.

Parameters True No censoring 40 % censoring 60 % censoring

h3 1 0.957 (0.447) 1.089 (0.611) 1.209 (0.884)

β2 3 2.969 (0.210) 3.010 (0.254) 3.061 (0.340)

σ2 1.5 1.554 (0.444) 1.642 (0.463) 1.654 (0.552)
ρ 1 0.977 (0.277) 1.051 (0.318) 1.072 (0.322)



Robustness to misspecification of the correlation structure

=⇒ evaluate effects of misspecification with respect to correlation
structure

Let introduce model (M2) defined by:

λi (t|bi ) =
3∑

m=1

hm1[τm−1,τm[(t) exp(X t
i β + bi )

b ∼ N (0, σ2Σpol(ρ))

with

Σpol(ρ) =
1

1 + Dρ



Robustness to misspecification of correlation structure

Table: Mean of the parameter estimates and empirical standard error in
parentheses estimated in model (M2) from 100 repetitions with data
generated under model (M1). The number of subjects N is fixed at 300.

Parameters True No censoring 40 % censoring 60 % censoring

h1 2 2.276 (1.600) 2.298 (1.642) 2.556 (2.223)

β2 3 3.098 (0.223) 3.045 (0.276) 3.086 (0.333)

σ2 1.5 1.932 (0.495) 1.805 (0.566) 1.946 (0.590)
ρ 1 0.817 (0.164) 0.748 (0.168) 0.648 (0.167)



Comparison with other models
without spatial correlation structure

Consider the proportional hazards model (M3):

λi (t|bi ) =
3∑

m=1

hm1[τm−1,τm[(t) exp(X t
i β) (M3)

and the univariate frailty model (M4):

λi (t|bi ) =
3∑

m=1

hm1[τm−1,τm[(t) exp(X t
i β + bi ) (M4)

bi
iid∼ N (0, σ2)



Results of comparisons with other models

Table: Mean of the parameter estimates and empirical standard error in
parentheses estimated in model (M3) and model (M4) from 100
repetitions with data generated under model (M1). The number of
subjects N is fixed at 300.

Parameters True Prop. hazards model Univ. frailty model

h1 2 2.583 (0.721) 2.172 (0.688)
h2 0.5 0.351 (0.128) 0.455 (0.194)
h3 1 0.298 (0.115) 0.757 (0.342)

β1 2 1.555 (0.210) 1.874 (0.250)
β2 3 2.299 (0.269) 2.835 (0.294)

σ2 1.5 × 0.988 (0.270)



Analysing the Gilgel Gibe time to malaria data set

Oodally et al. (2020)

I 2037 children

I 16 different villages

I 4 covariates: distance to the dam, sex, structure of the roof of
the household, age (3− 7, 7 <)

Results

I correlation structure Σpol chosen by comparing AIC

I reject null hypothesis H0:ρ =∞ using likelihood ratio test

I no significant effect for distance to dam

I significant effect for children older than 7 years
higher malaria risk of 42%

Comparisons with other models



Hazard rate estimates based on univariate spatially
correlated frailty model with correlation structure Σpol(ρ)
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Figure: Hazard rates estimates. Average daily rainfall within different
time periods annotated in red.



Plot of the correlation as a function of the distance
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Figure: Correlation values Σpol(ρ̂) as a function of distance.



Conclusion and perspectives

Conclusion:

I spatially correlated univariate frailty model

I convergent estimation algorithm

I analysis of malaria data using a model taking into account
distance to dam and distance between individual without
confounding effect

Perspective:

I more complex correlation structure

I partial likelihood criteria
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