Invasion of cooperative parasites in moderately structured host populations

Cornelia Pokalyuk

joint work in progress with Vianney Brouard

Phages

- Phages are viruses infecting bacteria.
- Bacteria have evolved different resistance mechanisms against phages.

Figure: Westra et al. (2012) Annu Rev Genet.

CRISPR and anti-CRISPR

- Bacteria evolved the CRISPR immune system to defend against phages.
- Phages evolved anti-CRISPRs (ACRs) to protect against CRISPR.

Figure by S. van Houte

Effect of population structure

- ACR-mechanism relies on cooperation of ACR-phages
- When the density of ACR-phages is sufficiently high, simultaneous infection or reinfection of bacteria by ACR-phages is likely.
- In a well mixed-population at low frequencies ACR-phages cannot profit from cooperation.
- In a structured population co-infection of bacteria by phages is more likely.
- ACR-phage could more likely survive in structured bacterial populations.

When ACR-phages have a chance to invade a CRISPR-resistant bacterial population?

A toy model

- Infections dynamics occurs on a random graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
- The graph is fixed over the whole epidemic
- Initially on each vertex a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, v_{N} offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges

- Half-edges are matched according to the configuration model
- The graph is fixed over the whole epidemic

- Initially on each vertex a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, $v=v_{N}$ offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
 epidemic
- Initially on each vertex a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, v_{N} offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
 epidemic
- Initially on each vertex
a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, v_{N} offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
- The graph is fixed over the whole epidemic

- Initially on each vertex a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, v_{N} offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
- The graph is fixed over the whole epidemic

- Initially on each vertex
a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, $v=v_{N}$ offspring parasites (Acr-phages) are produced and the host dies.

A toy model

- Infections dynamics occurs on a graph with N vertices
- Each vertex has d_{N} half-edges
- Half-edges are matched according to the configuration model
- The graph is fixed over the whole epidemic

- Initially on each vertex a host (CRISPR-resistant bacterium) is placed
- The infection process starts on a single host, v_{N} offspring parasites (Acr-phages) are produced and the host dies.

A toy model

Reproduction

- Discrete generations: At the beginning of each generation parasites move to neighbouring vertices
- When a parasite infects a host alone, the parasite reproduces with a small probability p_{N}. In this case v_{N} offspring parasites are produced, the reproducing parasite and the host die.

Otherwise the parasite dies and the host survives.

- When at least two parasites infect a host simultaneously, v_{N} offspring parasites are produced and the reproducing parasite and the host dies
- If a parasite moves to an empty vertex, it stays there and moves further in the next generation.

A toy model

Reproduction

- Discrete generations: At the beginning of each generation phages move to neighbouring vertices
- When a parasite infects a host alone, the parasite reproduces with a small probability p_{N}. In this case v_{N} offspring parasites are produced, the reproducing parasite and the host die.

Otherwise the parasite dies and the host survives.

- When at least two parasites infect a host simultaneously, v_{N} offspring parasites are produced and the reproducing parasite and the host dies
- If a parasite moves to an empty vertex, it stays there and moves further in the next generation.

A toy model

Reproduction

- Discrete generations: At the beginning of each generation phages move to neighbouring vertices
- When a parasite infects a host alone, the parasite reproduces with a small probability p_{N}.
In this case v_{N} offspring parasites are produced, the reproducing parasite and the host die.

Otherwise the parasite dies and the host survives.

- When at least two parasites infect a host simultaneously, v_{N} offspring parasites are produced and the reproducing parasite and the host dies
- If a parasite moves to an empty vertex, it stays there and moves further in the next generation.

A toy model

Reproduction

- Discrete generations: At the beginning of each generation phages move to neighbouring vertices
- When a parasite infects a host alone, the parasite reproduces with a small probability p_{N}. In this case v_{N} offspring parasites are produced, the reproducing parasite and the host die.

Otherwise the parasite dies and the host survives.

- When at least two parasites infect a host simultaneously, v_{N} offspring parasites are produced and the reproducing parasite and the host dies
- If a parasite moves to an empty vertex, it stays there and moves further in the next generation.

A toy model

Reproduction

- Discrete generations: At the beginning of each generation phages move to neighbouring vertices
- When a parasite infects a host alone, the parasite reproduces with a small probability $p=p_{N}$. In this case v_{N} offspring parasites are produced, the reproducing parasite and the host die.

Otherwise the parasite dies and the host survives.

- When at least two parasites infect a host simultaneously, v_{N} offspring parasites are produced and the reproducing parasite and the host dies
- If a parasite moves to an empty vertex, it stays there and moves further in the next generation.

Can the parasite invade the host population?

Fix sequences $\left(v_{N}\right),\left(d_{N}\right),\left(p_{N}\right)$ and denote by $X_{n}^{(N)}$ the number of hosts killed till generation n.

Let $u>0$ and denote by

$$
E_{N}^{u}=\cup_{n}\left\{\frac{X_{n}^{(N)}}{N} \geq u\right\}
$$

the event that the parasite invades the host population to a proportion u.

Parameter regime of interest

- $p_{N} v_{N} \ll 1$:

Reproduction by parasites hitting a host alone is subcritical

- $d_{N} \ll N$:

No (almost) complete graph

- $v_{N}, d_{N} \gg 1$:
-A large number of parasites is produced at reproduction,
-Many hosts are reachable from a host

Theorem A

Assume

$$
\begin{aligned}
& \text { (C1) } d_{N} \sim N^{\beta} \text { for some } 0<\beta<1 \\
& \text { (C2) } p_{N}=O\left(\frac{1}{v_{N}^{b}}\right) \text { with } b>1 \\
& \text { (C3a) } v_{N} \sim c \sqrt{d_{N}} \text { for some } c>0,
\end{aligned}
$$

Denote by $p_{\text {pois }}$ the survival probability of a $\operatorname{Pois}\left(\frac{c^{2}}{2}\right)-G W$-process.
Case: $\frac{c^{2}}{2}>1$. Let $0<u<p_{\text {pois }}$. Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(E_{N}^{u}\right)=p_{\text {pois }}
$$

Case: $\frac{c^{2}}{2} \leq 1$. Let $u>0$. Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(E_{N}^{u}\right)=0
$$

Theorem B

Assume (C1), (C2) and

$$
(\mathrm{C} 3 \mathrm{~b}) v_{N} \ll \sqrt{d_{N}},
$$

Let $u>0$. Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(E_{N}^{u}\right)=0
$$

Assume (C1), (C2) and

$$
(\mathrm{C} 3 \mathrm{c}) v_{N} \gg \sqrt{d_{N}} .
$$

Let $0<u<1$. Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(E_{N}^{u}\right)=1
$$

Reproduction by cooperation and the birthday problem

d_{N} edges, v_{N} parasites

Reproduction by cooperation and the birthday problem

CoSame: Cooperation from the same edge

A pair of parasites chooses the same edge with probability: $\frac{1}{d_{N}}$
Number of pairs of parasites on a vertex: $\binom{v_{N}}{2} \in \Theta\left(v_{N}^{2}\right)$
Number of edges occupied by a pair of parasite $\Theta\left(\frac{v_{N}^{2}}{d_{N}}\right)$
If $v_{N} \sim c \sqrt{d_{N}}$, the probability that two parasites attack the same vertex by choosing the same edge is non-trivial.

Number of pairs at the critical scaling

Consider a vertex with v_{N} parasites. Let q_{k} be the probability, that k pairs of parasites choose the same edge and the remaining parasites choose different edges.

$$
\begin{aligned}
q_{k} & =\frac{\binom{v_{N}}{2} \cdots \cdot\binom{v_{N}-2(k-1)}{2}}{k!} \frac{d_{N}\left(d_{N}-1\right) \cdots \cdots\left(d_{N}-\left(v_{N}-k\right)+1\right)}{d_{N}{ }^{k} d_{N}{ }^{v_{N}-k}} \\
& \sim\left(\frac{v_{N}^{2}}{2 d_{N}}\right)^{k} \frac{1}{k!} \exp \left(-\frac{\sum_{i=1}^{v_{N}-k+1} i}{d_{N}}\right) \sim\left(\frac{v_{N}^{2}}{2 d_{N}}\right)^{k} \frac{1}{k!} \exp \left(-\frac{v_{N}^{2}}{2 d_{N}}\right)
\end{aligned}
$$

If $v_{N} \sim c \sqrt{d_{N}}$,

$$
q_{k} \sim\left(\frac{c^{2}}{2}\right)^{k} \frac{1}{k!} e^{-\frac{c^{2}}{2}}
$$

the number of pairs of phages choosing the same edge is approximately $\operatorname{Pois}\left(\frac{c^{2}}{2}\right)$-distributed for large N.

Sketch of the proof of Theorem A

Upper bound on the invasion probability

Reproduction of parasites essentially is driven only
by reproduction of parasite pairs due to CoSame
as long as the number of killed hosts is relatively small:

- When the number of new parasites is $\ell_{N} V_{N}$ about $\frac{c^{2}}{2} \ell_{N}$ new hosts get successfully infected
- ReproductionAlone: Only about $\ell_{N} v_{N} p_{N} \ll \ell_{N}$ new hosts get killed by parasites hitting a vertex alone.
- Cooperation from diffrent edges: Reproduction by parasites infecting a vertex from different edges is rare as long as the number ℓ_{N} of infected hosts
is sufficiently small

CoDiff: Cooperation from different edges

A pair of parasites located on different edges chooses the same vertex with probability: $\frac{1}{N}$.
For $\ell_{N} v_{N}$ parasites we have roughly $\ell_{N} v_{N}$ different occupied edges and so $\Theta\left(\ell_{N}^{2} v_{N}^{2}\right)$ pairs of occupied edges.
$\Rightarrow \Theta\left(\frac{\ell_{N}^{2} \nu_{N}^{2}}{N}\right)$ new infected hosts due to CoDiff.
As long as $\left(\ell_{N} v_{N}\right)^{2} \sim \ell_{N}^{2} c^{2} d_{N}=\ell_{N}^{2} c^{2} N^{\beta} \ll N$, CoDiff is rare.

Coupling with GW-process

- Numbers of killed hosts $\left(X_{n}^{(N)}\right)$ can be estimated from above whp by the total size of an GW-process with an offspring distribution that is close to $\operatorname{Pois}\left(\frac{c^{2}}{2}\right)$ until the total size of the GW population remains constant or crosses a level ℓ_{N} for an appropriate sequence $\left(\ell_{N}\right)$ with $\left(\ell_{N}\right) \rightarrow \infty$, such that CoDiff does not play a role.
- The probability to hit the level ℓ_{N} is $p_{\text {pois }}+o(1)$.
- Estimate invasion probability by 1 , once the level ℓ_{N} is hit.

Lower bound on the invasion probability

Coupling with GW-process

- For an approximation from below ignore RepAlone and (initially) CoDiff
- Control how likely a pair of parasites is lost by collision, that is by hitting a vertex which host has been killed before or is currently infected successfully by other parasites.
- Whp $\left(X_{n}^{(N)}\right)$ can be approximated from below by the total population size of a GW process which offspring distribution is close to a $\operatorname{Pois}\left(\frac{c^{2}}{2}\right)$ until the total size of the GW-process remains constant or crosses the level N^{α} for any $0<\alpha<1$.
- The level N^{α} is reached with probability $p_{\text {pois }}+o(1)$.
- Remains to show that the level $u N$ is reached whp as well.

Growing further from the level N^{α}

- Either ignore further CoDiff and infer potential infection routes
- Or incorporate CoDiff

Hitting the forward epidemics

Denote by $T_{N^{\alpha}}$ the generation when the total number of killed hosts crosses the level N^{α} for the first time, assume $T_{N^{\alpha}}<\infty$.

Hitting the forward epidemic

At generation $T_{N^{\alpha}}$ the number of hosts just killed is $\Theta\left(N^{\alpha}\right)$ (potentially more when CoDiff is not ignored).

Hitting the forward epidemic

With high probability a randomly chosen individual is not infected yet at generation $T_{N^{\alpha}}$.

Hitting the forward epidemic

Identify individuals that might infect the randomly chosen individual in the next generation

Identifying potential infection routes

Fix the parasite configurations at infection of the host over the whole epidemic.
As the configuration model is also fixed over the whole epidemic, an individual can infect only a certain fixed set of other individuals.

Hitting the forward epidemic

Identify individuals that might infect the randomly chosen individual in the next generation.

Hitting the forward epidemic

Ignoring RepAlone and CoDiff approximately Pois $\left(\frac{c^{2}}{2}\right)$-many individuals can infect the randomly chosen individual.

Hitting the forward epidemic

Follow the routes by which the randomly chosen individual can get infected further.

Hitting the forward epidemic

The configuration model is fixed over the total epidemic: Infection routes can be shifted upwards.

Hitting the forward epidemic

Follow infection routes until extinction or until an infectious individual in generation $T_{N^{\alpha}}$ is hit.

Hitting the forward epidemic

Follow infection routes until extinction or until an infectious individual in generation $T_{N^{\alpha}}$ is hit.

Hitting the forward epidemic

Follow infection routes until extinction or until an infectious individual in generation $T_{N^{\alpha}}$ is hit.

Hitting the forward epidemic

Throughout the backward process can be approximated from below whp by a GW-process with an approximately $\operatorname{Pois}\left(\frac{c^{2}}{2}\right)$-offspring distribution.

Lower bound on the invasion probability

- Consider k_{N} many randomly chosen hosts for a sequence $k_{N} \xrightarrow{N \rightarrow \infty} \infty$ sufficiently slowly
- With probability $p_{\text {pois }}+o(1)$ each chosen host gets (nearly independently) infected with probability $p_{p o i s}+o(1)$.
- Otherwise the number of chosen hosts that get infected is $o\left(k_{N}\right)$.
- Consequently, as $N \rightarrow \infty$ the proportion of eventually infected hosts is at least u for any $u<p_{\text {pois }}$ whp.

Sketch of the proof of Theorem B

- $v_{N} \ll \sqrt{d_{N}}$: It is unlikely that two or more parasites choose the same edge.
If in addition $v_{N} p_{N} \ll 1$, the epidemic is subcritical.
Hence, the parasite manages to invade the bacterial population with probability o(1).
- $v_{N} \gg \sqrt{d_{N}}$: In the first generation a large number of parasites cooperate by CoSame whp.
With high probability at least one of these parasites invades the bacterial population up to proportion u.

Outlook and perspective

- CoDiff allows for many additional infections after initial stochastic phase:
Final proportion of infected bacteria is $1-o(1)$ with probability $p_{\text {pois }}$.
- Mobile bacteria: Changing configuration during the epidemic
- Not all bacteria are CRISPR-resistant, not all phages are Anti-CRISPR-phages
- Reproducing bacteria
- More general offspring distribution depending on the number of parasites infecting a host simultaneously
- Continuous time

