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Where are we?

Introduction: delayed responses, working memory, persistent
activity and all that



It starts with Fuster in 1973

A delayed-response trial typically consists of the presenta-
tion of one of two possible visual cues, an ensuing period
of enforced delay and, at the end of it, a choice of motor
response in accord with the cue. The temporal separation
between cue and response is the principal element making
the delayed response procedure a test of an operationally
defined short-term memory function.



Fuster's paradigm
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Figures 1 and 4 of Fuster (1973).



Other delayed activities are observed
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Figure 6 of Fuster (1973).



A “modern” version of Fuster's paradigm
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Adaptation of figures from Funahashi et al (1989) by Constantinidis
et al (2018).



A better view of the rasters

Funahashi et al (1989) Figure 3.



Changing the delay

Funahashi et al (1989) Figure 11.



What happens when mistakes are made?
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Funahashi et al (1989) Figure 13.



Parametric working memory

Neuronal correlates of e MWW AN

parametric working memory « 500 ms >
in the prefrontal cortex PD KD Base Comparison KU PB

Ranulfo Romo, Carlos D. Brody, Adridn Hernandez
& Luis Lemus

Institute de Fisiologia Celular, Universidad Nacional Autonoma de México,
Meéxico D.F. 04510, México

Romo et al (1999) title and figure 1a.



10 15 20 25 30 35
Stimulus frequency (Hz)

Part of Romo et al (1999) figure 2.



First modelling efforts

Synaptic reverberation underlying
mnemonic persistent activity

Xiao-Jing Wang

Stimulus-specific persistent neural activity is the neural process underlying
active (working) memory. Since its y 30 years ago, activity
has been hypothesized to be sustained by synaptic reverberation in a recurrent
circuit. ¥s i and ing work has begun to test the
reverberation hypothesis at the cellular level. Moreover, theory has been
developed to describe memory storage of an analog stimulus (such as spatial
location or eye position), in terms of continuous ‘bump attractors’ and ‘line
attractors. This review summarizes new studies, and discusses insights and
predictions from biophysically based models. The stability of a working
memory network is recognized as a serious problem; stability can be achieved
it reverberation is largely by NMDA ptors at

to subserve worki
e, and therefore
must be able to be turned on and
switched off rapidly (=100 ms) by transient inputs.
For 30 years, persistent activity in the cortex has

been documented by numerous unit recordings from
behaving monkeys during wi emory tasks

(Box 1. How does stimulus- i
activity arise in a neural network? Can we explain
persistent activity in terms of the biophy 3
neurons and synapses, and circuit connect

memory, it
information-

persistent activi
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Cellular substrate

Heterogeneity in the pyramidal network of the
medial prefrontal cortex

Yun Wang!, Henry Markram?, Philip H Goodman?, Thomas K Berger?, Junying Ma! &
Patricia S Goldman-Rakic*3

The p cortex is iall to i activity that outlasts stimuli and is resistant to distractors,
presumed to be the basis of working memory. The pyramidal network that supports this actmty is unknown. Multineuron patch-
clamp recordings in the ferret medial prefrontal cortex showed a h of sy ing distinct sub ks
of dlfferent idal cells. One k was similar to the pyramidal network commonly found in primary sensory areas,

of dating p idal cells il ted with dep g synap The other
pyramidal cells with dual aplcal dendrit isplaying i i ; these cells were hyper reciprocally
connected with facilitating synap. i d i ion and post-tetanic potentiation. These cellular,
synaptic and network properties could ampllfy interactions b P idal neurons and support persistent activity in

the prefrontal cortex.
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Figure 1 of Wang et al (2006).



ELSEVIER

Models with short term facilitation

Available online at www.sciencedirect.com

ScienceDirect

Working models of working memory

Omri Barak' and Misha Tsodyks®

Working memory is a system that maintains and manipulates
information for several seconds during the planning and
execution of many cognitive tasks. Traditionally, it was believed
that the neuronal underpinning of working memoary is stationary
persistent firing of selective neuronal populations. Recent
advances introduced new ideas regarding possible
mechanisms of working memory, such as short-term synaptic
facilitation, precise tuning of recurrent excitation and inhibition,
and intrinsic network dynamics. These ideas are motivated by
computational considerations and careful analysis of
experimental data. Taken together, they may indicate the
plethora of different processes underlying working memory in
the brain.

activity related to storing a fixed item is not stationary,
and there is a large heterogeneity in the firing profiles of
different neurons [3,4,5%,6]. From the computational side,
the network activity representing a memorized item
should exhibit a sufficient degree of stability to ensure
memory retainment. 'l requirement is especially chal-
lenging for storing continuous variables, such as orien-
ration or spatial position of a visual cue, because of an
inevitable drift along the variable’s representation.
Furthermore, integrating the various data-driven chal-
lenges in a self-consistent manner is often a non-trivial
al problem.




Membrane conductances (ion channels) generate
fluctuations
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Figures 1 and 2 of Sigworth and Neher (1980).



Synapses generate even more fluctuations
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Figure 1 of Pouzat and Marty (1998).



Where are we?

Definition of the model
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The system consists in a finite set of N identical neurons.
Each neuron is synaptically connected to all the others.

Each neuron i € {1,... N} is associated with a membrane
potential denoted (U;(t))¢>0, taking value in N.

There is a threshold 6 € N. If U;(t) < 6 neuron i cannot
spike, while if Uj(t) > 6 it spikes at rate (.

When a neuron spikes its membrane potential is reset to zero.
That's the only way the membrane potential can decrease.
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Each neuron i has a facilitation state evolving with t, we
denote it (Fi(t))s>0 and it takes value in {0, 1}.

If Fi(t) =1 and a spike occurs at time t for neuron i, then the
membrane potential of every neuron is incremented by 1.

If Fi(t) = 0 the spike has no post-synaptic effect.

The facilitation state of a given neuron is set to 1 immediately
after a spike has been emitted by this neuron, then the
facilitation is lost at rate \.

We are here modelling the sub-network of strongly
interconnected pyramidal cells with facilitating synapses
described by Wang et al (2006) in the prefrontal cortex.



In picture
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Simulation with N =50, 8 = 10, A = 6.7 and # = 5 between time
1 and 2.



Zoom between time 1.20 and 1.25.



Where are we?

Empirical results



Simulations outline

Simulations are easily performed since the “global” network rate is
constant between two successive events (spike or facilitation loss).
Our C code writes to disk:

IR I

O 0000

Simulation of a networks with 50 neurons

Xoroshiro128+ PRNG seeds set at 18710305 and 1857075

The initial max membrane potential was set to 50

The initial probability for a synapse to be active was set to 0.750000
Parameter theta = 5.000000

Parameter beta = 10.000000

Parameter lambda = 6.700000

Simulation duration = 50.000000

Spike time Total nb of spikes Neuron of origin Neurons >= theta N synapse active f=1 at spike

0018467869 1 28 45 38 1
0051172237 2 49 44 39 0
0078398923 3 41 44 37 1
0132602453 4 47 43 35 1
0140281557 5 16 44 35 1



Tiny network example

Raster plots of 50 neurons network, with A = 6.7, 8 = 10 and
6 = 5. The initial probability for the synapses to be active was
0.75, the initial membrane potentials were drawn uniformly on
{0,1,...,49}. Left, from time O to 14; right from time 12 to 14.



Same network different seed

The scale bar is drawn between time 10 and time 15.



The counting process representation
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The two previous simulations, the first in black, the second in red.



Increasing A
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Time
Observed counting processes of a network made of 50 neurons with

increasing values of A from 1 to 9. In black, “top to bottom”,
Ae{l,2,...,6}; inred, A > 6.



Survival time distribution

Fraction still alive

Survival time
Empirical survival functions obtained from 1000 replicates with
6 =5, A =06.7 (red and blue), A = 7 (black) and A = 6 (orange),
B = 10 and a network with 50 neurons. The initial probability for
the synapses to be active was 0.75, the initial membrane potentials
were drawn uniformly on {0,1,...,49}. All simulations start from
the same random initial state except the red and blue ones. A log
scale is used for the ordinate.



Survival time when A is “too” large
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Same as before with A = 7 (black) and A = 8,...,18 (grey).



Survival time vs A\
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95 % Cl of the mean time to extinction as a function of A\. From
1000 simulations for each A and 3 = 10 and a network with 50
neurons. A log scale is used for the ordinate.



Survival time vs Network size
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95 % CI of the mean time to extinction as a function of N. From
100 simulations, for each N: A =7, 8 =10 and § = N/10. A log
scale is used for the ordinate.



Where are we?

Mean-field analysis



What can we do, what do we want?

» We cannot yet prove that the metastable state exists.

» We will therefore postulate that it does: that's what the
simulations show.

» We will use the intrinsic symmetry of the model: the neurons
are all equivalent.
» We will try to get network properties in the metastable state:

» network firing rate
» number of neurons in each state

» number of facilitated synapses
|

from the 4 network parameters: N, 6, 3, \.
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We have (Uj(t))e>0 € N, but from the network dynamics what
matters is to know whether U;(t) > 6 or not.

We then have to consider 6 + 1 different states for U;(t):
{0,1,...,0 — 1,> 0}, that is, 0 states below threshold and 1
state above.

Let us write

> N;(t) for i € {0,1,...,0 — 1} the number of neurons whose
membrane potential equals 7
» Ny(t) the number of neurons whose membrane potential is > 6

at time t.

We obviously have: 3% o N;(t) = N at all times.

Then under our assumption of quasi-stationarity, the
expectations of the N; should be almost constant in the
metastable phase.

Thus we let pg, (1, . .. 119 be the constants such that
E(No(t)) ~ po, ..., E(Ng(t)) = 119, where t is any time
before the extinction of the system.
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If we manage to compute 119, we know the approximate
network rate at anytime (before extinction): vy = ugf3.

In our model, when neuron j spikes at time s we have

Fi(s+) = 1, the question is:

if the next spike of j happens at time s + 7, do we still have
Fi(s+71)=17

By our model definition and our quasi-stationarity assumption
we have: E[F;(s + 7)|7] = e,

We introduce now our second “key” quantity:
HE = E (G_AT) s

where the expectation is taken with respect to the unknown
distribution of the conditioning rv T whose realization is 7.

(e is the “mean probability” that the synapse is still facilitated
when the neuron spikes.
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Circulation among U states

» Remark that g allows us to define the rate of “effective”
spikes (spikes that have a post-synaptic effect): pgfue.

> Stationarity means that the rate at which neurons leave
membrane potential state i € {0,1,...,0 —1,> 6} must equal
the rate at which neurons enter that state.

» For i€ {1,...,0 — 1} this translates into:

(roBre)mi = (HoBre)pi-1,

that is:
Ho =1 =" = lg-1-
» For the two extrem states, we have:

(1oBrEe)mo = pof

leading to
po=1/pe.
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But we have:
-1
Z pi+po=N.
i=0

Using the equality of the p; for i < 6 and our last equality
(1o = 1/ug), yields:

0
pog=N-——.
HE

We see that is pg increases, so does 1y and therefore
vn = pg3, the network spike rate.

We can also obtain a new expression for the rate of “effective’
spikes:

0
poBure = </V - ) Bue = B(LeN —0).
HE
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In the metastable state, a neuron leaves a membrane potential
state below threshold at rate: S(ugN — 0).

That neuron must go through a succession of 6 states to reach
threshold, the distribution of the time to reach threshold is
therefore an Erlang distribution with parameters 6 and

B(pueN — 0) and its mean value is:

9
B(neN —0) "

Once threshold has been reach, the rate at which a spike is
generated is 3 so the interval between two successive spikes of
a given neuron is approximately
0
T~ ———+Y
BlueN —06) =~
where Y is an exponential random variable with rate
parameter 3.
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» Remember that ug = E[exp(—AT)].
» We therefore have:

o0 0
HE = /0 exp [—A <6(MEN—9) +Y>] Bexp(—By)dy,

that is

uw[exp(m;,\,é,)“ Bexp(—(A+ B)y) dy

» Leading to:




» Remember that ug = E[exp(—AT)].
» We therefore have:

o 9
v [ o0 [ (=g )| ew-mar

that is

um[em(mg\,gﬂ/ Bexp(—(A+ B)y) dy

» Leading to:

o B (_M)
HESNT BT\ BueN—0) ) -

» This is an implicit equation we must solve for uk.
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Remarks

» We can do better than that and work with the distribution of
the Erlang random variable—giving the time spent below
threshold—instead of the mean of the latter as we just did.

» This requires a numerical integration whose precision we can
check.

» Looking at:

8 exp(—/\g )
A+ B(peN—06)) "’

we see that the right hand side is a decreasing function of \, so
if X is too large the equation could have no solution implying
that there is no metastable state as we saw in the simulations.

HE =~



Graphical solution of the implicit equation

0.6 -

Prob. of active synapse upon spike

. ,////

0.1 0.2 03 0.4 0.5 0.6
Prob. of active synapse upon spike

Examples with N =50, § =5, 5 =10, A =6,6.7,7,8,9,10, 11,12
(top to bottom). Dashed blue lines are obtained in two cases by
“numerical integration”.



Comparison between mean-field solution and simulations

The implicit equation solution gives:

With N=500, beta=10.0, lambda=6.0, ceil_theta=50 we get:

[...]

nu_E = 4085.11 (network spiking rate),

mu_theta = 408.51 (mean nb of neurons at or above threshold),
mu_A = 308.76 (mean nb of active synapses),

mu_E = 0.547 (prob of active synapse upon spike).

One numerical simulation gives:

Dealing with sim_n500_ub50_fO0p75_b10_16_siml_neuron:
[...]
**x Network level statistics *x*x*
Ignoring 10 time unit(s) at both ends we get:
nu_E = 4079.86 [4069,4091] (empirical network spiking rate and 95% CI)

mu_theta = 408.18 (empirical mean nb of neurons at or above threshold)
mu_A = 309.31 (empirical mean nb of active synapses)
mu_E = 0.547 (fraction of active synapse upon spike).
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Conclusion and perspectives

» The serious work just begins: we must prove the existence of
the metastable sate.

» The potential tuning of short-term facilitation (changing our
A) does not seem to have been studied by experimentalists; so
we will try to convince some of doing so.

» The exponential loss of memory in delayed response paradigms
implied by our metastable state hypothesis could be tested
with psychological experiments on humans.



Thank you all for listening!

The End
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