Inferring gene networks with single-cell data: from mechanistic modelling to statistics

Ulysse Herbach

Biohasard

10 June 2021

Biological context

How do cells make decisions?

Example of decision making:
Differentiation: "stem" cell \longrightarrow "mature" cell

Biological context

How do cells make decisions?

Example of decision making:
Differentiation: "stem" cell \longrightarrow "mature" cell

Fundamental diagram of molecular biology:

Biological context

How do cells make decisions?

Example of decision making:
Differentiation: "stem" cell \longrightarrow "mature" cell

Fundamental diagram of molecular biology:

Basic idea of systems biology:
The behaviour of a cell emerges from interactions between genes

1. Why a stochastic model?

Differentiation: change of paradigm

" old school"

"new school»
S. Huang, Non-genetic heterogeneity of cells in development: more than just noise.

Development, 2009

Differentiation: change of paradigm

" old school "

> «new school»
S. Huang, Non-genetic heterogeneity of cells in development: more than just noise.

Development, 2009

Remark

Seen on average (aka population or "bulk" data) as historically, these two paradigms are not distinguishable.

Population data

Population average

Cell population

Population data

- Repeats only reveal technical noise
- To get biological variability, one has to change conditions

Single-cell data

Single cells, 1 exp.

Individual cells

Single-cell data

- Variability looks important...
- Sub-populations may appear: "molecular phenotypes"

A visual example

Moussy et al, Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment.
PLOS Biology, 15(7), 2017

A visual example

Moussy et al, Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment.
PLOS Biology, 15(7), 2017

New paradigm

Gene expression is a stochastic phenomenon!

A modern view of Waddington landscapes

A modern view of Waddington landscapes

$\leftarrow 1942$!!!

A modern view of Waddington landscapes

Statistical question

Gene expression levels
Gene regulatory network

"Gold standard" dilemma: use real data (uncertain network) or simulated data (known network but unrealistic data)?

Statistical question

Gene expression levels
Gene regulatory network

"Gold standard" dilemma: use real data (uncertain network) or simulated data (known network but unrealistic data)?

Our approach

1. Build a mechanistic (hence stochastic) gene network model
2. Calibrate the model, which will correspond to infer a network

What kind of stochasticity?

Albayrak et al, Digital Quantification of Proteins and mRNA in Single Mammalian Cells. Molecular Cell, 61:914-924, 2016

What kind of stochasticity?

Albayrak et al, Digital Quantification of Proteins and mRNA in Single Mammalian Cells. Molecular Cell, 61:914-924, 2016

Remarks

- Typical distributions are not Poisson but rather Gamma
- Sometimes they appear as mixtures of Gamma distributions
\Rightarrow For this gene: $\langle\mathrm{mRNA}\rangle \approx 10^{2}$ and \langle Protein $\rangle \approx 10^{5}$ copies/cell

2. Mechanistic network model

Building block for gene networks

Building block for gene networks

Remarks

- This model is simple enough to tackle it mathematically
\Rightarrow Rates $k_{\text {on }}$, $k_{\text {off }}$ represent a set of many underlying reactions
- Can reproduce data when set in "bursty" regime ($k_{\text {off }} \gg k_{\text {on }}$)

Keeping only the most important noise

The only rare species is the promoter state $E(t)=0$ or 1 .

$$
\begin{gathered}
E(t): 0 \xrightarrow{k_{\text {on }}} 1,1 \xrightarrow{k_{\text {off }}} 0 \\
M^{\prime}(t)=s_{0} E(t)-d_{0} M(t) \\
P^{\prime}(t)=s_{1} M(t)-d_{1} P(t)
\end{gathered}
$$

Keeping only the most important noise

The only rare species is the promoter state $E(t)=0$ or 1.

$$
\begin{gathered}
E(t): 0 \xrightarrow{k_{\text {on }}} 1, \quad 1 \xrightarrow{k_{\text {off }}} 0 \\
M^{\prime}(t)=s_{0} E(t)-d_{0} M(t) \\
P^{\prime}(t)=s_{1} M(t)-d_{1} P(t)
\end{gathered}
$$

Interacting genes

Interacting genes

Principle: $k_{\text {on }, i}, k_{\text {off }, i}$ functions of proteins parameterized by $\theta=\left(\theta_{i j}\right)_{1 \leqslant i, j \leqslant n}$

Interacting genes

Principle: $k_{\text {on }, i}, k_{\text {off }, i}$ functions of proteins parameterized by $\theta=\left(\theta_{i j}\right)_{1 \leqslant i, j \leqslant n}$

Network model (dimensionless version)

We note n the number of genes in the network and write:

$$
\begin{aligned}
& \Rightarrow \mathbf{E}=\left(E_{1}, \ldots, E_{n}\right) \in\{0,1\}^{n} \quad \text { (promoters) } \\
& > \\
& \mathbf{M}=\left(M_{1}, \ldots, M_{n}\right) \in[0,1]^{n} \quad \text { (mRNA) } \\
& > \\
& \mathbf{P}=\left(P_{1}, \ldots, P_{n}\right) \in[0,1]^{n} \quad \text { (proteins) }
\end{aligned}
$$

We then consider the process $(\mathrm{E}(t), \mathrm{M}(t), \mathrm{P}(t))_{t \geqslant 0}$ defined by:

$$
\forall i \in \llbracket 1, n \rrbracket, \quad\left\{\begin{array}{c}
E_{i}(t): 0 \xrightarrow{k_{\mathrm{on}, i}(\mathrm{P}(t))} 1, \quad 1 \xrightarrow{k_{\mathrm{off}, i}(\mathrm{P}(t))} 0 \\
M_{i}^{\prime}(t)=d_{0, i}\left(E_{i}(t)-M_{i}(t)\right) \\
P_{i}^{\prime}(t)=d_{1, i}\left(M_{i}(t)-P_{i}(t)\right)
\end{array}\right.
$$

Some known results

Theorem (Benaïm, Le Borgne, Malrieu and Zitt, 2015)
Suppose that the functions $k_{\mathrm{on}, i}$ and $k_{\mathrm{off}, i}$ are continuous and >0 on $[0,1]^{n}$. Then $(\mathrm{E}(t), \mathrm{M}(t), \mathrm{P}(t))_{t \geqslant 0}$ is an ergodic PDMP.

Some known results

Theorem (Benaïm, Le Borgne, Malrieu and Zitt, 2015)

Suppose that the functions $k_{\mathrm{on}, i}$ and $k_{\mathrm{off}, i}$ are continuous and >0 on $[0,1]^{n}$. Then $(\mathrm{E}(t), \mathrm{M}(t), \mathrm{P}(t))_{t \geqslant 0}$ is an ergodic PDMP.

When promoters and mRNA are faster than proteins:
Deterministic limit (Faggionato, Gabrielli and Crivellari, 2010)
At the limit $\left[d_{1, i} / \min \left(d_{0, i}, k_{\text {on }, i}, k_{\text {off }, i}\right)\right] \rightarrow 0$, proteins follow

$$
\frac{\mathrm{dP}}{\mathrm{~d} t}=\Phi(\mathrm{P}) \quad \text { where } \quad \Phi_{i}(\mathrm{P})=d_{1, i}\left(\frac{k_{\mathrm{on}, i}(\mathrm{P})}{k_{\mathrm{on}, i}(\mathrm{P})+k_{\mathrm{off}, i}(\mathrm{P})}-P_{i}\right)
$$

There is also a diffusion limit (Pakdaman, Thieullen and Wainrib, 2012)

Some known results

Theorem (Benaïm, Le Borgne, Malrieu and Zitt, 2015)

Suppose that the functions $k_{\mathrm{on}, i}$ and $k_{\mathrm{off}, i}$ are continuous and >0 on $[0,1]^{n}$. Then $(\mathrm{E}(t), \mathrm{M}(t), \mathrm{P}(t))_{t \geqslant 0}$ is an ergodic PDMP.

When promoters and mRNA are faster than proteins:
Deterministic limit (Faggionato, Gabrielli and Crivellari, 2010)
At the limit $\left[d_{1, i} / \min \left(d_{0, i}, k_{\text {on }, i}, k_{\text {off }, i}\right)\right] \rightarrow 0$, proteins follow

$$
\frac{\mathrm{dP}}{\mathrm{~d} t}=\Phi(\mathrm{P}) \quad \text { where } \quad \Phi_{i}(\mathrm{P})=d_{1, i}\left(\frac{k_{\mathrm{on}, i}(\mathrm{P})}{k_{\mathrm{on}, i}(\mathrm{P})+k_{\mathrm{off}, i}(\mathrm{P})}-P_{i}\right)
$$

There is also a diffusion limit (Pakdaman, Thieullen and Wainrib, 2012)
Idea: we place ourselves in the case $d_{1, i} \ll \min \left(d_{0, i}, k_{\text {on }, i}, k_{\text {off }, i}\right)$, but without passing directly to the limit (in practice $d_{1, i} / d_{0, i} \approx 0.2$).

Example 1: two-gene "toggle switch"

Promoter active periods

Example 2: four genes with stimulus

A Network

B Single cell

C Population average

Two crucial simplifications

1. When $d_{1, i} \ll d_{0, i}$, we have an "intermediate" simplification:

$$
\forall i \in \llbracket 1, n \rrbracket, \quad\left\{\begin{array}{c}
E_{i}(t): 0 \xrightarrow{k_{\mathrm{on}, i}(\mathrm{P}(t))} 1, \quad 1 \xrightarrow{k_{\mathrm{off}, i}(\mathrm{P}(t))} 0 \\
P_{i}^{\prime}(t)=d_{1, i}\left(E_{i}(t)-P_{i}(t)\right)
\end{array}\right.
$$

2. We can then define (when $k_{\mathrm{on}, i} \ll k_{\mathrm{off}, i}$):

$$
\mathcal{L}(\mathrm{M} \mid \mathrm{P})=\bigotimes_{i=1}^{n} \operatorname{Gamma}\left(\frac{k_{\mathrm{on}, i}(\mathbf{P})}{d_{0, i}}, \frac{k_{\mathrm{off}, i}(\mathrm{P})}{d_{0, i}}\right)
$$

Two crucial simplifications

1. When $d_{1, i} \ll d_{0, i}$, we have an "intermediate" simplification:

$$
\forall i \in \llbracket 1, n \rrbracket, \quad\left\{\begin{array}{c}
E_{i}(t): 0 \xrightarrow{k_{\mathrm{on}, i}(\mathrm{P}(t))} 1, \quad 1 \xrightarrow{k_{\mathrm{off}, i}(\mathrm{P}(t))} 0 \\
P_{i}^{\prime}(t)=d_{1, i}\left(E_{i}(t)-P_{i}(t)\right)
\end{array}\right.
$$

2. We can then define (when $k_{\mathrm{on}, i} \ll k_{\mathrm{off}, i}$) :

$$
\mathcal{L}(\mathrm{M} \mid \mathrm{P})=\bigotimes_{i=1}^{n} \operatorname{Gamma}\left(\frac{k_{\mathrm{on}, i}(\mathbf{P})}{d_{0, i}}, \frac{k_{\mathrm{off}, i}(\mathrm{P})}{d_{0, i}}\right)
$$

Remark

The reduced model $(\mathrm{E}(t), \mathrm{P}(t))_{t \geqslant 0}$ is still a PDMP with the same properties (ergodicity, same deterministic limit).

Comparing models

A Complete / Discrete

C Reduced / Discrete

B Complete / Hybrid

D Reduced/Hybrid

Remark

We shall use:

- Model A or B for data simulation ("gold standard")
- Model C or D for building inference algorithms

3. Deriving a statistical model

Inference strategy

1. Obtain a simple analytical approximation of the stationary distribution $p(\mathbf{x}, \mathbf{y} \mid \theta)$ of mRNA $\mathbf{x}=\left(x_{i}\right)$ and proteins $\mathbf{y}=\left(y_{i}\right)$
2. Replace $\theta=\left(\theta_{i j}\right)$ by a variational parameter $\alpha(t)=\left(\alpha_{i j}(t)\right)$
3. Use $p(\mathbf{x}, \mathbf{y} \mid \alpha(t))$ as a statistical likelihood to be maximized

Inference strategy

1. Obtain a simple analytical approximation of the stationary distribution $p(\mathbf{x}, \mathbf{y} \mid \theta)$ of mRNA $\mathbf{x}=\left(x_{i}\right)$ and proteins $\mathbf{y}=\left(y_{i}\right)$
2. Replace $\theta=\left(\theta_{i j}\right)$ by a variational parameter $\alpha(t)=\left(\alpha_{i j}(t)\right)$
3. Use $p(\mathbf{x}, \mathbf{y} \mid \alpha(t))$ as a statistical likelihood to be maximized

Statistical model for cell k observed at time t_{k}

$$
\begin{aligned}
p\left(\mathbf{y}_{k}\right) & =\prod_{i=1}^{n} y_{k i}{ }^{c_{i} \sigma_{k i}-1} e^{-c_{i} y_{k i}} \frac{c_{i}{ }^{c_{i} \sigma_{k i}}}{\Gamma\left(c_{i} \sigma_{k i}\right)} \\
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{k}\right) & =\prod_{i=1}^{n} x_{k i}{ }^{a^{i} \sigma_{k i}-1} e^{-b_{i} x_{k i}} \frac{b_{i}^{a_{i} \sigma_{k i}}}{\Gamma\left(a_{i} \sigma_{k i}\right)}
\end{aligned}
$$

Inference strategy

1. Obtain a simple analytical approximation of the stationary distribution $p(\mathbf{x}, \mathbf{y} \mid \theta)$ of mRNA $\mathbf{x}=\left(x_{i}\right)$ and proteins $\mathbf{y}=\left(y_{i}\right)$
2. Replace $\theta=\left(\theta_{i j}\right)$ by a variational parameter $\alpha(t)=\left(\alpha_{i j}(t)\right)$
3. Use $p(\mathbf{x}, \mathbf{y} \mid \alpha(t))$ as a statistical likelihood to be maximized

Statistical model for cell k observed at time t_{k}

$$
\begin{aligned}
p\left(\mathbf{y}_{k}\right) & =\prod_{i=1}^{n} y_{k i}{ }^{c_{i} \sigma_{k i}-1} e^{-c_{i} y_{k i}} \frac{c_{i}{ }^{c_{i} \sigma_{k i}}}{\Gamma\left(c_{i} \sigma_{k i}\right)} \\
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{k}\right) & =\prod_{i=1}^{n} x_{k i}{ }^{a^{i} \sigma_{k i}-1} e^{-b_{i} x_{k i}} \frac{b_{i}^{a_{i} \sigma_{k i}}}{\Gamma\left(a_{i} \sigma_{k i}\right)}
\end{aligned}
$$

Interaction function (choice of $k_{\mathrm{on}, i}$)

$$
\sigma_{k i}\left(\mathbf{y}_{k}\right)=\frac{\exp \left(\beta_{i}+\sum_{j} \alpha_{j i}\left(t_{k}\right) y_{k j}\right)}{1+\exp \left(\beta_{i}+\sum_{j} \alpha_{j i}\left(t_{k}\right) y_{k j}\right)}
$$

Self-consistent field approximation

Aim: approximate the stationary distribution $p(\mathbf{y})$ of $(\mathbf{P}(t))_{t \geqslant 0}$
Hartree approximation (Walczak, Sasai and Wolynes, 2005)
Locally independent promoters but which are subject to a common "proteomic field": in other words $p(\mathbf{y}) \approx h(\mathbf{y})$ with

$$
h(\mathbf{y})=\prod_{i=1}^{n} \frac{y_{i}^{a_{i}(\mathbf{y})-1}\left(1-y_{i}\right)^{b_{i}(\mathbf{y})-1}}{\mathrm{~B}\left(a_{i}(\mathbf{y}), b_{i}(\mathbf{y})\right)}
$$

where $a_{i}(\mathbf{y})=k_{\text {on }, i}(\mathbf{y}) / d_{1, i}$ and $b_{i}(\mathbf{y})=k_{\text {off }, i}(\mathbf{y}) / d_{1, i}$.

Self-consistent field approximation

Aim: approximate the stationary distribution $p(\mathbf{y})$ of $(\mathbf{P}(t))_{t \geqslant 0}$

Hartree approximation (Walczak, Sasai and Wolynes, 2005)

Locally independent promoters but which are subject to a common "proteomic field": in other words $p(\mathbf{y}) \approx h(\mathbf{y})$ with

$$
h(\mathbf{y})=\prod_{i=1}^{n} \frac{y_{i}^{a_{i}(\mathbf{y})-1}\left(1-y_{i}\right)^{b_{i}(\mathbf{y})-1}}{\mathrm{~B}\left(a_{i}(\mathbf{y}), b_{i}(\mathbf{y})\right)}
$$

where $a_{i}(\mathbf{y})=k_{\text {on }, i}(\mathbf{y}) / d_{1, i}$ and $b_{i}(\mathbf{y})=k_{\text {off }, i}(\mathbf{y}) / d_{1, i}$.

Why it should work: a concentration result

At the limit $d_{1, i} \ll \min \left(d_{0, i}, k_{\text {on }, i}, k_{\text {off }, i}\right)$, the function h converges to a sum of Dirac measures $\delta_{\overline{\mathbf{y}}_{k}}$ where the $\overline{\mathbf{y}}_{k}$ are exactly the fixed points of the previous deterministic system (i.e. $\Phi\left(\overline{\mathbf{y}}_{k}\right)=0$).

Distributions: exact vs. approximate

Inference in practice

Step 2. EM algorithm

Step 3. Score matrix

Small benchmark (PDMP network model)

Data: 10 time points with 100 cells per time point (1000 cells sampled per data set) Networks: random directed trees (uniform distribution) with stimulus and activations

Real data

Semrau et al., Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nature Communications, 8(1)2017

Data: 9 time points with 272 cells on average per time point (between 137 and 335) Inference: particular subset of 41 genes considered in [Semrau et al., 2017]

First result: two viewpoints

A Inferred network

Pluripotency
Post-implantation epiblast

Extraembryonic endoderm
Neuroectoderm

B Time decomposition

Back to the mechanistic model

Prospects

Calibration seems not too bad. Can now make predictions...

An open question...

How to optimally exploit the time information?

How to optimally exploit the time information?

How to optimally exploit the time information?

Thank you!

國 Herbach, U., Bonnaffoux, A., Espinasse, T., and Gandrillon, O. (2017). Inferring gene regulatory networks from single-cell data: a mechanistic approach.
BMC Systems Biology, 11(1):105.
R Bonnaffoux, A., Herbach, U., Richard, A., Guillemin, A., Gonin-Giraud, S., Gros, P.-A., and Gandrillon, O. (2019).
WASABI: a dynamic iterative framework for gene regulatory network inference.
BMC Bioinformatics, 20(1):220.
R
Ventre, E. (2021).
Reverse engineering of a mechanistic model of gene expression using metastability and temporal dynamics.
bioRxiv preprint, https://doi.org/10.1101/2021.06.01.446414.

