Inferring gene networks with single-cell data:
from mechanistic modelling to statistics
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Biological context

How do cells make decisions?

Example of decision making:
Differentiation: “stem” cell — “mature” cell
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Biological context

How do cells make decisions?

Example of decision making:
Differentiation: “stem” cell — “mature” cell

Fundamental diagram of molecular biology:

. transcription . translation

Basic idea of systems biology:
The behaviour of a cell emerges from interactions between genes
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1. Why a stochastic model?
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Differentiation: change of paradigm

« old school » « new school »

Time

Number of cells

Marker X

S. Huang, Non-genetic heterogeneity of cells in development: more than just noise.

Development, 2009
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Differentiation: change of paradigm

« old school » « new school »

Time

Number of cells

Marker X

S. Huang, Non-genetic heterogeneity of cells in development: more than just noise.
Development, 2009
Remark

Seen on average (aka population or “bulk” data) as historically,
these two paradigms are not distinguishable.
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Population data

Cell population
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Population data

Cell population

Repeats only reveal technical noise

Gene 2

Repeats

Gene 1

To get biological variability, one has to change conditions
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Single-cell data

Individual cells

Gene 2

Single cells, 1 exp.
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Single-cell data

Single cells, 1 exp.

Individual cells “. ° . °
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Variability looks important...

Sub-populations may appear: “molecular phenotypes”
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A visual example

Moussy et al, Integrated time-lapse and single-cell transcription studies highlight the
variable and dynamic nature of human hematopoietic cell fate commitment.
PLOS Biology, 15(7), 2017
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A visual example

Moussy et al, Integrated time-lapse and single-cell transcription studies highlight the
variable and dynamic nature of human hematopoietic cell fate commitment.
PLOS Biology, 15(7), 2017

New paradigm
Gene expression is a stochastic phenomenon!
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A modern view of Waddington landscapes
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Statistical question

Gene expression levels Gene regulatory network

O—
“Gold standard” dilemma: use real data (uncertain network) or
simulated data (known network but unrealistic data)?
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Statistical question

Gene expression levels Gene regulatory network

O—
“Gold standard” dilemma: use real data (uncertain network) or
simulated data (known network but unrealistic data)?

Our approach
Build a mechanistic (hence stochastic) gene network model

Calibrate the model, which will correspond to infer a network
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What kind of stochasticity?
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Albayrak et al, Digital Quantification of Proteins and mRNA in Single Mammalian
Cells. Molecular Cell, 61:914-924, 2016
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Albayrak et al, Digital Quantification of Proteins and mRNA in Single Mammalian

Cells. Molecular Cell, 61:914-924, 2016

Remarks
Typical distributions are not Poisson but rather Gamma
Sometimes they appear as mixtures of Gamma distributions
For this gene: (mRNA) ~ 102 and (Protein) ~ 10° copies/cell
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2. Mechanistic network model
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Building block for gene networks
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Building block for gene networks

Remarks
This model is simple enough to tackle it mathematically
Rates kon, koff represent a set of many underlying reactions

Can reproduce data when set in “bursty” regime (koff > kon)
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Keeping only the most important noise

The only rare species is the promoter state £(t) =0 or 1.

E(t):0fen 1, 1 5% 0

M'(t) = soE(t) — doM(t)
P'(t) = st M(t) — d1 P(t)
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M'(t) = soE(t) — doM(t)
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Interacting genes

14 /32



Interacting genes

Principle: kon i, kofr,i
functions of proteins
parameterized by
0 = (O)i<ij<n

14/32



Interacting genes
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Principle: kon i, kofr,i
functions of proteins
parameterized by
0 = (O)i<ij<n
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Network model (dimensionless version)

We note n the number of genes in the network and write:
E=(E,...,E)€{0,1}" (promoters)
M= (My,...,M,) €1[0,1]" (mRNA)
P = (Pi,...,P,) €[0,1]" (proteins)

We then consider the process (E(t), M(t), P(t))t>0 defined by:

kon,i(P(t)) koff,i(P(t))\

0

E,‘(t) :0 17 1
Vie[Lnl, §M/(t) = doi(Ei(t) — Mi(t))
Pi'(t) = dii(Mi(t) — Pi(t))
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Some known results

Theorem (Benaim, Le Borgne, Malrieu and Zitt, 2015)

Suppose that the functions kon i and kof; are continuous and > 0
on [0,1]". Then (E(t), M(t),P(t))t>0 is an ergodic PDMP.
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Some known results

Theorem (Benaim, Le Borgne, Malrieu and Zitt, 2015)
Suppose that the functions kon i and ko are continuous and > 0

on [0,1]". Then (E(t), M(t),P(t))t>0 is an ergodic PDMP.
When promoters and mRNA are faster than proteins:
Deterministic limit (Faggionato, Gabrielli and Crivellari, 2010)

At the limit [dy ;/ min(do,i, kon,i, koff,i)] — 0, proteins follow

P _
dt

koni(P)
®(P) where &;(P)=d; : — P .
P) (P)=d (kon,i(P)+koff,i(P) >

There is also a diffusion limit (Pakdaman, Thieullen and Wainrib, 2012)
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Some known results

Theorem (Benaim, Le Borgne, Malrieu and Zitt, 2015)

Suppose that the functions kon i and ko are continuous and > 0
on [0,1]". Then (E(t), M(t),P(t))t>0 is an ergodic PDMP.
When promoters and mRNA are faster than proteins:
Deterministic limit (Faggionato, Gabrielli and Crivellari, 2010)

At the limit [dy ;/ min(do,i, kon,i, koff,i)] — 0, proteins follow

P _
dt

koni(P)
®(P) where &;(P)=d; : — P .
P) (P)=d <kon,i(P)+koff,i(P) )

There is also a diffusion limit (Pakdaman, Thieullen and Wainrib, 2012)

Idea: we place ourselves in the case di ; < min(do,i, Kon,i, Koff,i),
but without passing directly to the limit (in practice dy;/dp; ~ 0.2).
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Example 1: two-gene “toggle switch”
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Example 2: four genes with stimulus

A Network B Single cell

—P — P —P — P

1
/ - 3 “) C Population average
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s g ————  ——— |
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Two crucial simplifications
When dy; < dp ;, we have an “intermediate” simplification:
kon,i(P(t)) koff,i(P(t))
S

vi e [1.n] Ei(t):0 1, 1——=0
T P = dui(EiE) - Pi(t)

We can then define (when kon i < Koff,i)

L(M|P) = ®Gamm < OZI;(P), koz’;(.P)>
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Two crucial simplifications
When dy; < dp ;, we have an “intermediate” simplification:
kon,i(P(t)) koff,i(P(t))
S

vi e [1.n] Ei(t):0 1, 1——=0
TPt = du(Ei(t) — Pi(t))

We can then define (when kon i < Koff,i)

L(M|P) = ®Gamm < OZI;(P), kOfCF};(.P)>

Remark

The reduced model (E(t), P(t))¢>o is still a PDMP with the same
properties (ergodicity, same deterministic limit).
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Comparing models

A Complete / Discrete B Complete / Hybrid

T T _TC I I

0 5 10 15 20 25 30

C Reduced / Discrete D Reduced / Hybrid

I [ O WTTT T 1T 1111

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Remark

We shall use:
Model A or B for data simulation (“gold standard”)

Model C or D for building inference algorithms
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3. Deriving a statistical model
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Inference strategy

Obtain a simple analytical approximation of the stationary
distribution p(x,y|f) of mMRNA x = (x;) and proteins y = (y;)
Replace 6 = (0j;) by a variational parameter a(t) = (a;(t))
Use p(x,y|a(t)) as a statistical likelihood to be maximized
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Use p(x,y|a(t)) as a statistical likelihood to be maximized

Statistical model for cell k observed at time t;
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Inference strategy
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distribution p(x,y|f) of mMRNA x = (x;) and proteins y = (y;)
Replace 6 = (0j;) by a variational parameter a(t) = (a;(t))
Use p(x,y|a(t)) as a statistical likelihood to be maximized

Statistical model for cell k observed at time t;
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Self-consistent field approximation

Aim: approximate the stationary distribution p(y) of (P(t)):=0

Hartree approximation (Walczak, Sasai and Wolynes, 2005)

Locally independent promoters but which are subject to a common
“proteomic field": in other words p(y) = h(y) with

T A L
" =115 ) b))

where a;(y) = kon,i(y)/d1,i and bi(y) = kof,i(y)/d1,i-
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Self-consistent field approximation

Aim: approximate the stationary distribution p(y) of (P(t)):=0

Hartree approximation (Walczak, Sasai and Wolynes, 2005)

Locally independent promoters but which are subject to a common
“proteomic field": in other words p(y) = h(y) with

T A L
" =115 ) b))

where a;(y) = kon,i(y)/d1,i and bi(y) = kof,i(y)/d1,i-

Why it should work: a concentration result

At the limit dq,; < min(do,i, kon,i, Koff,i), the function h converges to
a sum of Dirac measures dy, where the y, are exactly the fixed
points of the previous deterministic system (i.e. ®(yx) = 0).
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Distributions:
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Inference in practice

Step 1. Gene calibration Step 2. EM algorithm Step 3. Score matrix
( Genei ) F Expectation step ) ( Interaction j—j
— T(&i(to), bi) to
\/ )
— —o— q(t) case 1
— @b Al : :
y

—o— aji(t) case 2

— T(&i(t2), bi) t; (4 ]

Maximization step T T
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Small benchmark (PDMP network model)

0 A Directed o B Undirected
Random Random
081 -e- GENIE3 0.8 A -&- GENIE3
\ SINCERITIES SINCERITIES
v 064 .\ o 0.6
g . —e- HARISSA [ —®- HARISSA
T044 qu N < 04 -e- PIDC
0.2 4 0.2 4
00 v v v Wt
510 20 30 40 50 60 70 80 90 100 510 20 30 40 50 60 70 80 90 100
No. of genes No. of genes
0 C Directed (dropouts) 0 D Undirected (dropouts)
’ Random : Random
0.8 4 -e- GENIE3 0.8 A -&- GENIE3
wosd & SINCERITIES w064 \ SINCERITIES
g N —e- HARISSA [ 3 —&- HARISSA
< 044 < 044 PIDC
0.2 0.2 4 -
0.0 00l T

100

No. of genes

Data: 10 time points with 100 cells per time point (1000 cells sampled per data set)
Networks: random directed trees (uniform distribution) with stimulus and activations
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Real data

Sox2 Dnmt3a Sparc
Data (t = Oh) Data (t = Oh) Data (t = Oh)
Data (t = 24h) Data (t = 24h) Data (t = 24h)
Data (t = 48h) Data (t = 48h) Data (t = 48h)
Data (t = 96h) Data (t = 96h) Data (t = 96h)
0 é 1b 1‘5 20 0 é 1b 1‘5 20 0 Zb 4b 60
mRNA (copies per cell) mRNA (copies per cell) mRNA (copies per cell)

Semrau et al., Dynamics of lineage commitment revealed by single-cell transcriptomics
of differentiating embryonic stem cells. Nature Communications, 8(1)2017

Data: 9 time points with 272 cells on average per time point (between 137 and 335)
Inference: particular subset of 41 genes considered in [Semrau et al., 2017]
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First result: two viewpoints

A Inferred network
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Back to the mechanistic model

Sox2 Dnmt3a Sparc
—— Model (t = Oh) —— Model (t = Oh) —— Model (t = Oh)
Data (t = Oh) Data (t = Oh) Data (t = Oh)

/}

rrvr

—— Model (t = 24h)
Data (t = 24h)

—— Model (t = 24h)
Data (t = 24h)

—— Model (t = 24h)
Data (t = 24h)

(
e

—— Model (t = 48h) —— Model (t = 48h) —— Model (t = 48h)
\ Data (t = 48h) Data (t = 48h) Data (t = 48h)
—— Model (t = 96h) —— Model (t = 96h) —— Model (t = 96h)
\\,\ Data (t = 96h) Data (t = 96h) —\/\‘Data o
0 5 10 15 20 0 5 0 15 20 0 20 40 60
mRNA (copies per cell) mRNA (copies per cell) mRNA (copies per cell)
Prospects

Calibration seems not too bad. Can now make predictions...
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An open question...
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How to optimally exploit the time information?

to t t2
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How to optimally exploit the time information?
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How to optimally exploit the time information?

e . o
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Thank you!

[@ Herbach, U., Bonnaffoux, A., Espinasse, T., and Gandrillon, O. (2017).

Inferring gene regulatory networks from single-cell data: a mechanistic
approach.

@ Bonnaffoux, A., Herbach, U., Richard, A., Guillemin, A., Gonin-Giraud, S.,
Gros, P.-A., and Gandrillon, O. (2019).

WASABI: a dynamic iterative framework for gene regulatory network
inference.

@ Ventre, E. (2021).

Reverse engineering of a mechanistic model of gene expression using
metastability and temporal dynamics.
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