

Growing from a few cells to a population (and back)

G. Amselem, A. Barizien, C. Baroud (LadHyX & Institut Pasteur)

T. Roget, A. Marguet, V. Bansaye, S. Méléard (CMAP)

Prokaryotes

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6578–6583, June 1998

Perspective

Prokaryotes: The unseen majority

William B. Whitman*[†], David C. Coleman[‡], and William J. Wiebe[§]

10³⁰ prokaryotes on Earth 10⁵-10⁶ prokaryotes/mL water 10⁶-10⁹ prokaryotes/gram soil

Prokaryotes

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6578–6583, June 1998

Perspective

Prokaryotes: The unseen majority

William B. Whitman*[†], David C. Coleman[‡], and William J. Wiebe[§]

10³⁰ prokaryotes on Earth 10⁵-10⁶ prokaryotes/mL water 10⁶-10⁹ prokaryotes/gram soil

Host-Bacterial Mutualism in the Human Intestine

Fredrik Bäckhed,* Ruth E. Ley,* Justin L. Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon†

SCIENCE VOL 307 25 MARCH 2005

10¹⁴ bacteria/human gut (10x more than our cells)

Hand print on a large TSA plate from my 8 1/2 year old son after playing outside.

Hand print on a large TSA plate from my 8 1/2 year old son after playing outside.

Hand print on a large TSA plate from my 8 1/2 year old son after playing outside.

Monod (1949)

Monod (1949)

Time (minutes)

Side view

Glass

Side view

1,500 droplets/chip 1 droplet : 1 nL

Amselem, Guermonprez et al., *Lab Chip* (2016)

Barizien et al, *J. R. Soc. Interface*, 2019

Bacillus subtilis growing in LB

1 cell/droplet ~900 scanned droplets per chip

Bacterial growth curves

Bacterial growth curves

Bacterial growth curves

Cell-division models

Cell-division models

Cell-division models

Bacteria are adders

Current Biology 25, 385–391, February 2, 2015

Cell-Size Control and Homeostasis in Bacteria

Sattar Taheri-Araghi,^{1,7} Serena Bradde,^{2,7} John T. Sauls,¹ Norbert S. Hill,³ Petra Anne Levin,⁴ Johan Paulsson,⁵ Massimo Vergassola,^{1,*} and Suckjoon Jun^{1,6,*}

Differences between the models are (very) small

And analytically it's easier to use a timer model...

ANNALS OF MATHEMATICS Vol. 55, No. 2, March, 1952 Printed in U.S.A.

ON AGE-DEPENDENT BINARY BRANCHING PROCESSES¹

BY RICHARD BELLMAN AND THEODORE HARRIS

Microscopic variability in division times

Distribution of population sizes as a function of time

All moments grow exponentially, with the same growth rate α

Asymptotic shape depends on cv_{μ}

All moments grow exponentially, with the same growth rate α

 $M_N(t) \sim n_1 e^{\alpha t} \qquad SD_N(t) \sim n_2 e^{\alpha t}$ $CV_N(t) = SD_N(t)/M_N(t) = n_2/n_1$

All moments grow exponentially, with the same growth rate $\,\,lpha\,$

 $M_N(t) \sim n_1 e^{\alpha t} \qquad SD_N(t) \sim n_2 e^{\alpha t}$ $CV_N(t) = SD_N(t)/M_N(t) = n_2/n_1$

Comparison with experiment

Poisson distribution of cells at initial times

$$CV_{\lambda}^{2}(\infty) = \left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2} = \underbrace{\frac{1 - e^{-\lambda}}{\lambda} \left(\frac{n_{2}}{n_{1}}\right)_{BH}^{2}}_{(1)} + \underbrace{\frac{1 - (\lambda + 1)e^{-\lambda}}{\lambda}}_{(2)}.$$

$$CV_{\lambda}^{2}(\infty) = \left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2} = \underbrace{\frac{1 - e^{-\lambda}}{\lambda} \left(\frac{n_{2}}{n_{1}}\right)_{BH}^{2}}_{(1)} + \underbrace{\frac{1 - (\lambda + 1)e^{-\lambda}}{\lambda}}_{(2)}.$$

$$CV_{\lambda}^{2}(\infty) = \left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2} = \underbrace{\frac{1 - e^{-\lambda}}{\lambda} \left(\frac{n_{2}}{n_{1}}\right)_{BH}^{2}}_{(1)} + \underbrace{\frac{1 - (\lambda + 1) e^{-\lambda}}{\lambda}}_{(2)}.$$

Adaptation to a new environment

Adaptation to a new environment

$$CV_{\sigma_{1}}^{2}(\infty) = \left(\frac{n_{2}}{n_{1}}\right)_{\sigma_{1}}^{2} = \underbrace{e^{\alpha^{2}\left(\sigma_{1}^{2}-\sigma^{2}\right)}\left(\frac{n_{2}}{n_{1}}\right)_{BH}^{2}}_{(1)} + \underbrace{e^{\alpha^{2}\left(\sigma_{1}^{2}-\sigma^{2}\right)}-1}_{(2)}.$$

Combining all sources of stochasticity

$$CV_{\sigma_1,\lambda}^2(\infty) = \left(\frac{n_2}{n_1}\right)_{\sigma_1,\lambda}^2 = \frac{1 - e^{-\lambda}}{\lambda} e^{\alpha^2(\sigma_1^2 - \sigma^2)} \left(\frac{n_2}{n_1}\right)_{BH}^2 + \frac{1 - e^{-\lambda}}{\lambda} \left(e^{\alpha^2(\sigma_1^2 - \sigma^2)} - 1\right) + \frac{1 - (\lambda + 1)e^{-\lambda}}{\lambda}.$$

From one cell to a population

- Timer/adder/sizer give similar population distributions
- Variability comes from 3 sources:

Stochasticity in division times (classical Bellman-Harris) Adaptation to a new environment Poisson distribution of initial number of cells

Stochasticity at initial times dominates variability in division times

From population to single cell stochasticity

Macroscopic variability in population sizes

Microscopic variability in division times

Using the CV does not work

Dynamics of division

$$Res_i = Res(t_i) = N(t_{i+1}) - N(t_i)\exp(\alpha\Delta t).$$

Residuals - simulations

Residuals - simulations

Residuals - simulations

Residuals - experiments

Residuals - experiments

Residuals - experiments

Residuals - binning by N

Residuals — binning by N — simulations

Residuals – binning by N – experiments

Residuals – binning by N – experiments

Residuals – binning by N – experiments

Residuals – one more problem

Residuals – one more problem

What is the proportionality coefficient between fluorescence and number of cells?

What is the variability in fluorescence between cells?

120 µm

- In theory, we can infer single-cell division parameters from macroscopic parameters on population sizes
- Compute the residuals
- Experimentally: work in progress

Thank you!