

Institut Pasteur

Growing from a few cells to a population (and back)

G. Amselem, A. Barizien, C. Baroud (LadHyX \& Institut Pasteur)
T. Roget, A. Marguet, V. Bansaye, S. Méléard (CMAP)

Prokaryotes

Perspective

Prokaryotes: The unseen majority
William B. Whitman*†, David C. Coleman \ddagger, and William J. Wiebe§
10^{30} prokaryotes on Earth
105-10 ${ }^{6}$ prokaryotes/mL water
106-10 ${ }^{9}$ prokaryotes/gram soil

Prokaryotes

Perspective

Prokaryotes: The unseen majority
William B. Whitman* ${ }^{*}$, David C. Coleman \ddagger, and William J. Wiebe§

Host-Bacterial Mutualism in the Human Intestine

Fredrik Bäckhed,* Ruth E. Ley,* Justin L. Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon \dagger
10^{30} prokaryotes on Earth
105-10 ${ }^{6}$ prokaryotes/mL water
106-10 ${ }^{9}$ prokaryotes/gram soil
10^{14} bacteria/human gut (10x more than our cells)

Microbial growth 101

Microbial growth 101

Hand print on a large TSA plate from my 8 1/2 year old son after playing outside.

Microbial growth 101

Microbial growth 101

Bacterial growth: population level

Monod (1949)

Bacterial growth: population level

Monod (1949)

Bacterial growth: population level

OD
Growth curves are very reproducible

Time (minutes)

Microfluidics for bacterial growth

Top view

Microfluidics for bacterial growth

Top view

Side view

1777
Glass

Microfluidics for bacterial growth

Top view

Side view

Microfluidics for bacterial growth

Microfluidics for bacterial growth

Bacillus subtilis growing in LB

1 cell/droplet
~900 scanned droplets per chip

1 second $\longrightarrow 70$ minutes

Barizien et al, J. R. Soc. Interface, 2019

Bacterial growth curves

Barizien et al, J. R. Soc. Interface, 2019

Bacterial growth curves

Barizien et al, J. R. Soc. Interface, 2019

Bacterial growth curves

Barizien et al, J. R. Soc. Interface, 2019

Cell-division models

Timer

Cell-division models

Timer

Sizer

Cell-division models

Timer

Sizer

Adder

Bacteria are adders

Current Biology 25, 385-391, February 2, 2015

Cell-Size Control and Homeostasis in Bacteria

Sattar Taheri-Araghi, ${ }^{1,7}$ Serena Bradde, ${ }^{2,7}$ John T. Sauls, ${ }^{1}$
Norbert S. Hill, ${ }^{3}$ Petra Anne Levin, ${ }^{4}$ Johan Paulsson, ${ }^{5}$
Massimo Vergassola, ${ }^{1, *}$ and Suckjoon Jun ${ }^{1,6, *}$

Differences between the models are (very) small

And analytically it's easier to use a timer model...

Annals of Mathematics Vol. 55, No. 2, March, 1952 Printed in U.S.A.

ON AGE-DEPENDENT BINARY BRANCHING PROCESSES ${ }^{1}$
By Richard Bellman and Theodore Harris

Microscopic variability in division times

Macroscopic variability in population sizes

$$
\mathrm{CV}_{N}(t)=S D_{N}(t) / M_{N}(t)
$$

Distribution of population sizes as a function of time

All moments grow exponentially, with the same growth rate α

Auto- similar shape of the distribution of Ncells, for Times=1:5:300 min

Asymptotic shape depends on $\mathbf{c V}_{\mu}$

Bellman-Harris

All moments grow exponentially, with the same growth rate α

$$
\begin{aligned}
& M_{N}(t) \sim n_{1} e^{\alpha t} \quad S D_{N}(t) \sim n_{2} e^{\alpha t} \\
& \mathrm{CV}_{N}(t)=S D_{N}(t) / M_{N}(t)=n_{2} / n_{1}
\end{aligned}
$$

Bellman-Harris

All moments grow exponentially, with the same growth rate α

$$
\begin{aligned}
& M_{N}(t) \sim n_{1} e^{\alpha t} \quad S D_{N}(t) \sim n_{2} e^{\alpha t} \\
& \mathrm{CV}_{N}(t)=S D_{N}(t) / M_{N}(t)=n_{2} / n_{1}
\end{aligned}
$$

Comparison with experiment

Poisson distribution of cells at initial times

Bellman-Harris + Poisson distribution

Bellman-Harris + Poisson distribution

Bellman-Harris + Poisson distribution

$$
C V_{\lambda}^{2}(\infty)=\left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2}=\underbrace{\frac{1-e^{-\lambda}}{\lambda}\left(\frac{n_{2}}{n_{1}}\right)_{B H}^{2}}_{(1)}+\underbrace{\frac{1-(\lambda+1) e^{-\lambda}}{\lambda}}_{(2)}
$$

Bellman-Harris + Poisson distribution

$$
C V_{\lambda}^{2}(\infty)=\left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2}=\underbrace{\frac{1-e^{-\lambda}}{\lambda}\left(\frac{n_{2}}{n_{1}}\right)_{B H}^{2}}_{(1)}+\underbrace{\frac{1-(\lambda+1) e^{-\lambda}}{\lambda}}_{(2)} .
$$

Bellman-Harris + Poisson distribution

$$
C V_{\lambda}^{2}(\infty)=\left(\frac{n_{2}}{n_{1}}\right)_{\lambda}^{2}=\underbrace{\frac{1-e^{-\lambda}}{\lambda}\left(\frac{n_{2}}{n_{1}}\right)_{B H}^{2}}_{(1),}+\underbrace{\frac{1-(\lambda+1) e^{-\lambda}}{\lambda}}_{(2)} .
$$

Adaptation to a new environment

Adaptation to a new environment

Adaptation to a new environment

Adaptation to a new environment

Adaptation to a new environment

Adaptation to a new environment

Adaptation to a new environment

Combining all sources of stochasticity

$$
\begin{aligned}
C V_{\sigma_{1}, \lambda}^{2}(\infty)=\left(\frac{n_{2}}{n_{1}}\right)_{\sigma_{1}, \lambda}^{2}= & \frac{1-e^{-\lambda}}{\lambda} e^{\alpha^{2}\left(\sigma_{1}^{2}-\sigma^{2}\right)}\left(\frac{n_{2}}{n_{1}}\right)_{B H}^{2} \\
& +\frac{1-e^{-\lambda}}{\lambda}\left(e^{\alpha^{2}\left(\sigma_{1}^{2}-\sigma^{2}\right)}-1\right) \\
& +\frac{1-(\lambda+1) e^{-\lambda}}{\lambda}
\end{aligned}
$$

Comparison theory/experiments

Comparison theory/experiments

Comparison theory/experiments

Auto- similar shape of the Fluo distribution, for Times=74:5:274 min

Comparison theory/experiments

From one cell to a population

- Timer/adder/sizer give similar population distributions
- Variability comes from 3 sources:

Stochasticity in division times (classical Bellman-Harris)
Adaptation to a new environment
Poisson distribution of initial number of cells

- Stochasticity at initial times dominates variability in division times

From population to single cell stochasticity

Macroscopic variability in population sizes

Microscopic variability in division times

Using the CV does not work

Dynamics of division

$$
\operatorname{Res}_{i}=\operatorname{Res}\left(t_{i}\right)=N\left(t_{i+1}\right)-N\left(t_{i}\right) \exp (\alpha \Delta t) .
$$

Residuals - simulations

Residuals - simulations

Residuals - simulations

Residuals - experiments

Residuals - experiments

Residuals - experiments

Residuals - binning by \mathbf{N}

Residuals - binning by N - simulations

Residuals - binning by N - experiments

Fluo $_{\mathrm{j}}$

Residuals - binning by N - experiments

Fluo $_{j}$

Fluo

Residuals - binning by N - experiments

Fluo $_{\mathrm{j}}$

Fluo

Residuals - one more problem

Residuals - one more problem

Residuals - one more problem

1 second $\longrightarrow 70$ minutes

What is the proportionality coefficient between
fluorescence and number of cells?

What is the variability in fluorescence between cells?

From population to single cell

- In theory, we can infer single-cell division parameters from macroscopic parameters on population sizes
- Compute the residuals
- Experimentally: work in progress
[B]

Thank you!

