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ABSTRACT The number of prokaryotes and the total
amount of their cellular carbon on earth are estimated to be
4–6 ! 1030 cells and 350–550 Pg of C (1 Pg " 1015 g),
respectively. Thus, the total amount of prokaryotic carbon is
60–100% of the estimated total carbon in plants, and inclusion
of prokaryotic carbon in global models will almost double
estimates of the amount of carbon stored in living organisms.
In addition, the earth’s prokaryotes contain 85–130 Pg of N
and 9–14 Pg of P, or about 10-fold more of these nutrients than
do plants, and represent the largest pool of these nutrients in
living organisms. Most of the earth’s prokaryotes occur in the
open ocean, in soil, and in oceanic and terrestrial subsurfaces,
where the numbers of cells are 1.2 ! 1029, 2.6 ! 1029, 3.5 !
1030, and 0.25–2.5 ! 1030, respectively. The numbers of het-
erotrophic prokaryotes in the upper 200 m of the open ocean,
the ocean below 200 m, and soil are consistent with average
turnover times of 6–25 days, 0.8 yr, and 2.5 yr, respectively.
Although subject to a great deal of uncertainty, the estimate
for the average turnover time of prokaryotes in the subsurface
is on the order of 1–2 ! 103 yr. The cellular production rate
for all prokaryotes on earth is estimated at 1.7 ! 1030 cells!yr
and is highest in the open ocean. The large population size and
rapid growth of prokaryotes provides an enormous capacity
for genetic diversity.

Although invisible to the naked eye, prokaryotes are an
essential component of the earth’s biota. They catalyze unique
and indispensable transformations in the biogeochemical cy-
cles of the biosphere, produce important components of the
earth’s atmosphere, and represent a large portion of life’s
genetic diversity. Although the abundance of prokaryotes has
been estimated indirectly (1, 2), the actual number of pro-
karyotes and the total amount of their cellular carbon on earth
have never been directly assessed. Presumably, prokaryotes’
very ubiquity has discouraged investigators, because an esti-
mation of the number of prokaryotes would seem to require
endless cataloging of numerous habitats.

To estimate the number and total carbon of prokaryotes on
earth, several representative habitats were first examined. This
analysis indicated that most of the prokaryotes reside in three
large habitats: seawater, soil, and the sediment!soil subsur-
face. Although many other habitats contain dense populations,
their numerical contribution to the total number of pro-
karyotes is small. Thus, evaluating the total number and total
carbon of prokaryotes on earth becomes a solvable problem.

Aquatic Environments. Numerous estimates of cell density,
volume, and carbon indicate that prokaryotes are ubiquitous in
marine and fresh water (e.g., 3–5). Although a large range of
cellular densities has been reported (104–107 cells!ml), the
mean values for different aquatic habitats are surprisingly
similar. For the continental shelf and the upper 200 m of the
open ocean, the cellular density is about 5 ! 105 cells!ml. A

portion of these cells are the autotrophic marine cyanobacteria
and Prochlorococcus spp., which have an average cellular
density of 4 ! 104 cells!ml (6). The deep ("200 m) oceanic
water contains 5 ! 104 cells!ml on average. From global
estimates of volume, the upper 200 m of the ocean contains a
total of 3.6 ! 1028 cells, of which 2.9 ! 1027 cells are
autotrophs, whereas ocean water below 200 m contains 6.5 !
1028 cells (Table 1).

The upper 10 cm of sediment in the open ocean is included
in the oceanic habitat because, as a result of animal mixing and
precipitation, it is essentially contiguous with the overlying
water column. Most of the marine sediment is found in the
continental rise and abyssal plain, so the numbers of pro-
karyotes were calculated from an arithmetic average of the
cellular densities in the studies cited by Deming and Baross
(ref. 9; Table 1). The Nova Scotian continental rise was
excluded from this calculation because of its unusual hydrology
(10).

There are fewer estimates of the number of prokaryotes in
freshwaters and saline lakes (5). Given an average density of
106 cells!ml, the total number of cells in freshwaters and saline
lakes is 2.3 ! 1026. This value is three orders of magnitude
below the numbers of prokaryotes in seawater.

In the polar regions, a relatively dense community of algae
and prokaryotes forms at the water–ice interface in annual sea
ice (11). In Antarctic sea ice, the estimated number of pro-
karyotes (2.2 ! 1024 cells) was based on the mean cell numbers
of Delille and Rosiers (12) and the mean areal extent of
seasonal ice (13). If the population size in the Arctic is similar
(14), the global estimate for both polar regions is 4 ! 1024 cells,
only a fraction of the total number of prokaryotes.

Soil. Soil is a major reservoir of organic carbon on earth and
an important habitat for prokaryotes. Prokaryotes are an
essential component of the soil decomposition subsystem, in
which plant and animal residues are degraded into organic
matter and nutrients are released into food webs (15). Many
studies indicate that the number of prokaryotes in forest soils
is much less than the number in other soils. The total number
of prokaryotes in forest soil was estimated from detailed direct
counts from a coniferous forest ultisol (16), which were
considered representative of forest soils in general (Table 2).
For other soils, including grasslands and cultivated soils, the
numbers of prokaryotes appear about the same, e.g., the
number of prokaryotes in Negev desert soil is comparable to
the number in cultivated soil (19). Therefore, the numbers of
prokaryotes in all other soils were estimated from the unpub-
lished field studies of E. A. Paul for cultivated soils (cited in ref.
18).

Subsurface. The subsurface is defined here as terrestrial
habitats below 8 m and marine sediments below 10 cm. Few
direct enumerations of subsurface prokaryotes have been
made, largely because of the difficulty in obtaining uncontam-
inated samples. Nevertheless, circumstantial evidence suggests
that the subsurface biomass of prokaryotes is enormous (20).
For instance, groundwater from deep aquifers and formation
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The distal human intestine represents an anaerobic bioreactor programmed with an
enormous population of bacteria, dominated by relatively few divisions that are
highly diverse at the strain/subspecies level. This microbiota and its collective ge-
nomes (microbiome) provide us with genetic and metabolic attributes we have not
been required to evolve on our own, including the ability to harvest otherwise
inaccessible nutrients. New studies are revealing how the gut microbiota has co-
evolved with us and how it manipulates and complements our biology in ways that
are mutually beneficial. We are also starting to understand how certain keystone
members of the microbiota operate to maintain the stability and functional adapt-
ability of this microbial organ.

The adult human intestine is home to an al-
most inconceivable number of microorga-
nisms. The size of the population—up to 100
trillion—far exceeds that of all other micro-
bial communities associated with the body_s
surfaces and is È10 times greater than the
total number of our somatic and germ cells
(1). Thus, it seems appropriate to view
ourselves as a composite of many species
and our genetic landscape as an amalgam of
genes embedded in our Homo sapiens
genome and in the genomes of our affiliated
microbial partners (the microbiome).

Our gut microbiota can be pictured as a
microbial organ placed within a host organ:
It is composed of different cell lineages with
a capacity to communicate with one another
and the host; it consumes, stores, and redis-
tributes energy; it mediates physiologically
important chemical transformations; and it
can maintain and repair itself through self-
replication. The gut microbiome, which may
contain Q100 times the number of genes in
our genome, endows us with functional
features that we have not had to evolve
ourselves.

Our relationship with components of this
microbiota is often described as commensal
(one partner benefits and the other is appar-
ently unaffected) as opposed to mutualistic
(both partners experience increased fitness).
However, use of the term commensal gener-
ally reflects our lack of knowledge, or at least
an agnostic (noncommittal) attitude about the
contributions of most citizens of this microbi-
al society to our own fitness or the fitness of
other community members.

The guts of ruminants and termites are well-
studied examples of bioreactors Bprogrammed[

with anaerobic bacteria charged with the task
of breaking down ingested polysaccharides,
the most abundant biological polymer on our
planet, and fermenting the resulting monosac-
charide soup to short-chain fatty acids. In these
mutualistic relationships, the hosts gain carbon
and energy, and their microbes are provided
with a rich buffet of glycans and a protected
anoxic environment (2). Our distal intestine
is also an anaerobic bioreactor that harbors
the majority of our gut microorganisms; they
degrade a varied menu of otherwise indigest-
ible polysaccharides, including plant-derived
pectin, cellulose, hemicellulose, and resistant
starches.

Microbiologists from Louis Pasteur and
Ilya Mechnikov to present-day scientists have
emphasized the importance of understanding
the contributions of this microbiota to human
health (and disease). Experimental and com-
putational tools are now in hand to compre-
hensively characterize the nature of microbial
diversity in the gut, the genomic features of
its keystone members, the operating principles
that underlie the nutrient foraging and sharing
behaviors of these organisms, the mechanisms
that ensure the adaptability and robustness of
this system, and the physiological benefits we
accrue from this mutualistic relationship. This
Review aims to illustrate these points and
highlight some future challenges for the field.

Microbial Diversity in the Human Gut
Bioreactor
The adult human gastrointestinal (GI) tract
contains all three domains of life—bacteria,
archaea, and eukarya. Bacteria living in the
human gut achieve the highest cell densities
recorded for any ecosystem (3). Nonetheless,
diversity at the division level (superkingdom
or deep evolutionary lineage) is among the
lowest (4); only 8 of the 55 known bacterial
divisions have been identified to date (Fig. 1A),
and of these, 5 are rare. The divisions that
dominate—the Cytophaga-Flavobacterium-

Bacteroides (CFB) (e.g., the genus Bacteroides)
and the Firmicutes (e.g., the genera Clostridium
and Eubacterium)—each comprise È30% of
bacteria in feces and the mucus overlying the
intestinal epithelium. Proteobacteria are com-
mon but usually not dominant (5). In com-
parison, soil (the terrestrial biosphere’s GI
tract, where degradation of organic matter
occurs) can contain 20 or more bacterial
divisions (6).

Our knowledge of the composition of the
adult gut microbiota stems from culture-based
studies (7), and more recently from culture-
independent molecular phylogenetic approaches
based on sequencing bacterial ribosomal RNA
(16S rRNA) genes. Of the 9200,000 rRNA
gene sequences currently in GenBank, only
1822 are annotated as being derived from the
human gut; 1689 represent uncultured bacte-
ria. rRNA sequences can be clustered into
relatedness groups based on their percent se-
quence identity. Cutoffs of 95 and 98% iden-
tity are used commonly to delimit genera and
species, respectively. Although these values
are somewhat arbitrary and the terms ‘‘genus’’
and ‘‘species’’ are not precisely defined for
microbes, we use them here to frame a view of
human gut microbial ecology. When the se-
quences (n 0 495 greater than 900 base pairs)
are clustered into species, and a diversity
estimate model is applied, a value of È800
species is obtained (Fig. 2). If the analysis is
adjusted to estimate strain number (unique se-
quence types), a value of 97000 is obtained
(Fig. 2). Thus, the gut microbiota, which ap-
pears to be tremendously diverse at the strain
and subspecies level, can be visualized as a
grove of eight palm trees (divisions) with
deeply divergent lineages represented by the
fan(s) of closely related bacteria at the very
top of each tree trunk.

Diversity present in the GI tract appears
to be the result of strong host selection and
coevolution. For example, members of the
CFB division that are predominantly asso-
ciated with mammals appear to be the most
derived (i.e., farthest away from the common
ancestor of the division), indicating that they
underwent accelerated evolution once they
adopted a mutualistic lifestyle. Moreover, a
survey of GenBank reveals that several sub-
groups in CFB are distributed among differ-
ent mammalian species (Fig. 1B), suggesting
that the CFB-mammal symbiosis is ancient
and that distinct subgroups coevolved with
their hosts.
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Bacterial growth curves

measurements display an exponential growth during a time
window of nearly 2 h, as shown in figure 4e.

3.2. Single-cell measurements
The experimental data thus generated are similar to data from
Monte Carlo simulations, in that they correspond to many
repetitions of the same experiment, and enable evaluation
of the effect of the cell-to-cell fluctuations. However, to com-
pare experiments and numerical results, simulations need as
an input an independent measurement of the division times
of the bacteria. These measurements are obtained at the
single-cell level, by confining bacteria between a glass slide
and a thin agarose pad (see Material and methods and elec-
tronic supplementary material, figure S4 for details). We
find that the distribution of division times can be well
approximated by a Gaussian with mean tand standard devi-
ation s, see electronic supplementary material, figure S4(B,C).
Moreover, the parameters of the Gaussian distribution evolve
with the generation number, a sign of the adaptation of bac-
teria to their new environment [35]. For Escherichia coli, the
average generation time decreases from 33 to 21 min between
the first and the fourth generation, while the coefficient of

variation cvm ¼ s/t decreases from 0.28 to 0.19 over the
same time. We find similar results for Bacillus subtilis, see elec-
tronic supplementary material, figure S4(D), in agreement with
results previously reported in the literature on E. coli [8,32] and
Salmonella enterica [31]. Fitting the distribution of division times
to a gamma distribution, as suggested in [29,36], does not
qualitatively affect our results, see electronic supplementary
material, figure S5.

3.3. Comparing microfluidic experiments with
theoretical predictions

The distribution of division times from the single-cell exper-
iments can now be used as inputs to obtain theoretical and
numerical predictions. The mean and standard deviation of
the division times of our strains were experimentally deter-
mined for the first four generations, and are considered to
be constant after the fourth generation. These can be used
as inputs into equations (2.3) and (2.19) to obtain the theoreti-
cal growth rate and coefficient of variation, respectively, and
as inputs of the Monte Carlo simulations to compute the
numerical shape of the PDF. The Poisson parameter is
obtained directly from the chip experiment by counting the
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Figure 4. General view of the microfluidic chip and on-chip experiments. (a) Top schematic view of the microfluidic chip, with two inlets and one outlet. Inlet (1) is
used to flow an oil solution while inlet (2) is used to flow the aqueous bacteria suspension. The observation chamber comprises 1495 anchors that each contain a
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dotted line represents the limit of detection, the top one indicates the end of the exponential phase. (Online version in colour.)
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3.2. Single-cell measurements
The experimental data thus generated are similar to data from
Monte Carlo simulations, in that they correspond to many
repetitions of the same experiment, and enable evaluation
of the effect of the cell-to-cell fluctuations. However, to com-
pare experiments and numerical results, simulations need as
an input an independent measurement of the division times
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qualitatively affect our results, see electronic supplementary
material, figure S5.

3.3. Comparing microfluidic experiments with
theoretical predictions

The distribution of division times from the single-cell exper-
iments can now be used as inputs to obtain theoretical and
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mined for the first four generations, and are considered to
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find that the distribution of division times can be well
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the first and the fourth generation, while the coefficient of

variation cvm ¼ s/t decreases from 0.28 to 0.19 over the
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results previously reported in the literature on E. coli [8,32] and
Salmonella enterica [31]. Fitting the distribution of division times
to a gamma distribution, as suggested in [29,36], does not
qualitatively affect our results, see electronic supplementary
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mined for the first four generations, and are considered to
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Summary

How cells control their size and maintain size homeostasis
is a fundamental open question. Cell-size homeostasis has
been discussed in the context of two major paradigms:
‘‘sizer,’’ in which the cell actively monitors its size and trig-
gers the cell cycle once it reaches a critical size, and
‘‘timer,’’ in which the cell attempts to grow for a specific
amount of time before division. These paradigms, in
conjunction with the ‘‘growth law’’ [1] and the quantitative
bacterial cell-cycle model [2], inspired numerous theoret-
ical models [3–9 ] and experimental investigations, from
growth [10, 11] to cell cycle and size control [12–15]. How-
ever, experimental evidence involved difficult-to-verify as-
sumptions or population-averaged data, which allowed
different interpretations [1–5, 16–20] or limited conclu-
sions [4–9 ]. In particular, population-averaged data and
correlations are inconclusive as the averaging process
masks causal effects at the cellular level. In this work,
we extended a microfluidic ‘‘mother machine’’ [21] and
monitored hundreds of thousands of Gram-negative Es-
cherichia coli and Gram-positive Bacillus subtilis cells un-
der a wide range of steady-state growth conditions. Our
combined experimental results and quantitative analysis
demonstrate that cells add a constant volume each gener-
ation, irrespective of their newborn sizes, conclusively
supporting the so-called constant D model. This model
was introduced for E. coli [6, 7 ] and recently revisited [9 ],
but experimental evidence was limited to correlations.
This ‘‘adder’’ principle quantitatively explains experimental
data at both the population and single-cell levels,
including the origin and the hierarchy of variability in the
size-control mechanisms and how cells maintain size
homeostasis.

Results

At the Population Level, New Experimental Data Confirm
the Growth Law
Population-level parameters derived from our single-cell data
followed established patterns for microbial growth known as
the growth law [1]: the average newborn cell volume hvbi
increased and the average generation time htdi decreased,
respectively, as the nutrient-imposed growth rate hli =
h1/tdi ln2 increased (newborn refers to the cells right after
birth; Figure 1A). The newborn cell volume depended expo-
nentially on the nutrient-imposed growth rate (hereafter
referred to as growth rate, unless otherwise noted), hnbi = A
exp(Bhli), in quantitative agreement with the growth law [1]
(Figure 1C, red symbols and line; A is the y intercept, and B
is the slope of the red line). Moreover, newborn length hsbi
and width hwbi, averaged over the entire set of individual
cells in each growth condition, also showed an exponential
dependence on the average growth rate hli (Figure S1A avail-
able online).
The size of individual cells also increased exponentially as

s(t) = sb2
at (where a is the instantaneous elongation rate),

and. their width did not change significantly between birth
and division (Figure S1B; [21]; hereafter, we use size and vol-
ume synonymously). The average instantaneous elongation
rate was identical to the average growth rate of the population
since h1/s ds/dti = hai ln2 = h1/tdi ln2 = hli.

At the Single-Cell Level, Individual Cells Show Systematic
Deviations from the Growth Law
Individual cells, however, exhibited intrinsic variability even
under constant growth conditions, and we asked whether
the quantitative relationship between the average size and
the average growth rate also applied at the single-cell level.
For example, the SDs of the growth rate and the newborn
cell size were w15% and w14% of their respective means
(Figure 1B). Therefore, when the growth-rate distributions for
two different growth conditions partially overlapped as shown
in Figure 1B, individual cells in the overlap region could have
had the same growth rate l = (ln 2)/td. Thus, if the growth
rate solely defined the cell’s growth physiology, individual
cells with the same l should have had on average the same
size as described by the growth law hnbi = A exp(Bhli). We
found this was not the case. For all seven growth conditions,
the size versus growth rate measured from individual cells,
nb versus l, systematically deviated from the population-level
growth law (Figure 1C, blue symbols and lines versus red sym-
bols and line). This deviation indicates that, at the single-cell
level, the size of individual cells is controlled by a mechanism
that is different from the growth law hnbi = A exp(Bhli) (see
below).

Correlations of Growth and Size Parameters Contradict
Both Sizer and Timer Models
The newborn cell size (sb) and the generation time (td) of indi-
vidual cells were negatively correlated (Figure 1D, left), which
excluded the timer model of cell-size control. Otherwise, we
would have seen constant td with respect to sb. Furthermore,
timer models showed instability when accounting for the
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Summary
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is a fundamental open question. Cell-size homeostasis has
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combined experimental results and quantitative analysis
demonstrate that cells add a constant volume each gener-
ation, irrespective of their newborn sizes, conclusively
supporting the so-called constant D model. This model
was introduced for E. coli [6, 7 ] and recently revisited [9 ],
but experimental evidence was limited to correlations.
This ‘‘adder’’ principle quantitatively explains experimental
data at both the population and single-cell levels,
including the origin and the hierarchy of variability in the
size-control mechanisms and how cells maintain size
homeostasis.

Results
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h1/tdi ln2 increased (newborn refers to the cells right after
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able online).
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s(t) = sb2
at (where a is the instantaneous elongation rate),

and. their width did not change significantly between birth
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rate was identical to the average growth rate of the population
since h1/s ds/dti = hai ln2 = h1/tdi ln2 = hli.
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Individual cells, however, exhibited intrinsic variability even
under constant growth conditions, and we asked whether
the quantitative relationship between the average size and
the average growth rate also applied at the single-cell level.
For example, the SDs of the growth rate and the newborn
cell size were w15% and w14% of their respective means
(Figure 1B). Therefore, when the growth-rate distributions for
two different growth conditions partially overlapped as shown
in Figure 1B, individual cells in the overlap region could have
had the same growth rate l = (ln 2)/td. Thus, if the growth
rate solely defined the cell’s growth physiology, individual
cells with the same l should have had on average the same
size as described by the growth law hnbi = A exp(Bhli). We
found this was not the case. For all seven growth conditions,
the size versus growth rate measured from individual cells,
nb versus l, systematically deviated from the population-level
growth law (Figure 1C, blue symbols and lines versus red sym-
bols and line). This deviation indicates that, at the single-cell
level, the size of individual cells is controlled by a mechanism
that is different from the growth law hnbi = A exp(Bhli) (see
below).

Correlations of Growth and Size Parameters Contradict
Both Sizer and Timer Models
The newborn cell size (sb) and the generation time (td) of indi-
vidual cells were negatively correlated (Figure 1D, left), which
excluded the timer model of cell-size control. Otherwise, we
would have seen constant td with respect to sb. Furthermore,
timer models showed instability when accounting for the
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observed exponential growth of individual cells (Supplemental
Information). The fact that cells born small take on average
more time before they divide is in principle consistent with a
sizer model. However, the strong positive correlations be-
tween the dividing size sd and sb (Figure 1D, right) ruled out
the model because the sizer predicted that sd should be
constant.

Cells Instead Employ ‘‘Adder’’ Principle
Our data instead support a model in which the size added
between birth and division (D = sd 2 sb) is constant for given
growth conditions. We found that, although D varied sig-
nificantly between growth conditions and also between
individual cells, D was on average constant irrespective of
the newborn size sb in each growth condition (Supplemental

Information). In fact, the entire conditional distribution
r(Djsb) had the same shape as the nonconditional distribu-
tion r(D), and distributions of D from different experimental
conditions collapsed onto a single curve when rescaled by
their mean (Figure 2, right; Figure S2). The distribution of
the size added in each generation, D, was thus independent
of the newborn cell size.
We also confirmed the constancy of D in two additional

E. coli strains from our previous work (K12 MG1655 and
B/r) [21] (Figure S3) and E. coli size mutants (Dpgm and
ftsA*) [16]. Furthermore, we also confirmed the validity of
the model in the Gram-positive B. subtilis (Figures 2B
and 2C).
The collapse of the conditional distributions in Figure 2

established the constant D model, or adder (as opposed to

A B

C

D

Figure 1. Growth Law at the Population Level and Systematic Deviations at the Single-Cell Level

(A) Top: time series of a typical cell growing in a nutrient-rich medium. Bottom: sample images of dividing E. coli cells in steady-state exponential growth at
37!C in seven different growth media.
(B) Partially overlapping distributions of the growth rate and the newborn size measured from individual cells in two different growth conditions. The vertical
lines show the population average values. Cells in the overlap region can have the same growth rate or newborn cell size.
(C) Population average of single-cell measurements demonstrates exponential dependence of newborn cell volume on the average growth rate (red). How-
ever, sb versus l of individual cells (binned data in empty blue circles; measured by following them from birth to division) shows systematic deviations from
the average growth law. Thus, although the cells in the overlap region in (B) can have the same growth rate or newborn cell size, the size of individual cells are
controlled by a mechanism that is different from the growth law. Otherwise, all blue symbols would have fallen on top of the red line.
(D) Correlations between rescaled growth parameters at the single-cell level with SDs from the entire set of E. coli data. Left: generation time versus size at
birth. Middle: elongation rate versus size at birth. Right: size at division versus size at birth. Dashed lines indicate predictions from the adder principle from
this work. The first correlation falsifies the timer model, whereas the last correlation falsifies the sizer model.
See also Figure S1.
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other (Figure 4A; [23, 24]). Hence, the variation of all the statis-
tics with growth conditions is determined by the unique
parameter hDi.

Discussion

Proteome and Biological Origin of Constancy of
Added Size
Since the proteome is a good proxy for cell size, the constantD
is consistent with the ‘‘structural models’’ discussed by Fantes
et al. [22]. Key features of the structural models include the
following: (1) individual cells elongate exponentially, (2) initia-
tors of cell cycle are produced at the same rate as the cell elon-
gation rate, and (3) accumulation of the initiators to a threshold
triggers the cell cycle [22]. Since the cellular volume and total
number of proteins increase with the growth rate, the cellular
fraction of protein initiators should reduce tomaintain the con-
stancy of the threshold. In a recent work by Scott et al. [11], the
bacterial proteome is partitioned into three ‘‘sectors’’: R, con-
taining ribosomal proteins; Q, containing housekeeping pro-
teins; and P, containing the rest of the proteins. Using prote-
ome data for the relative fraction 4p of the P-sector proteins
in E. coli (Figure 4E, left; [11]) and the respective average cell
volume hVi (Figure 1C, red line), we found that the total number
of P-sector proteins per cell Np = 4p3 hVi is relatively constant
in all growth conditions for different E. coli strains (see Figure 4
and Supplemental Information). Thus, proteins in the P sectors
behave as the initiators postulated in [22]. This leads to the
prediction that the majority of proteins involved in metabolism
(e.g., nutrient transporters andmetabolic sensors [15]) and the
cell cycle should belong to the P sector of the bacterial prote-
ome (with their constant basal level to the Q sector). Note that
the total proteome per cell increases exponentially with
respect to the average growth rate; the growth law ([5]; Fig-
ure 1C) can thus be interpreted as a response of the average
cell size (total proteome per cell) to nutrient conditions such
that the average P-sector proteins per cell is approximately
constant with respect to the nutrient-imposed growth rate.
There is a clear experimental avenue for the future that will
investigate howDwill changewhen the proteome composition
is perturbed by, e.g., transcription or translational inhibitors.

Extension to Other Organisms
The growing number of modern single-cell data sets provides
a unique opportunity to determine the applicability of our find-
ings to other bacteria as well as to eukaryotes. Analysis of

bacteria, such as Caulobacter [25, 26], and single-celled eu-
karyotes should illuminate the role played by programmed
degradation of regulatory proteins in cell-size homeostasis.
Fantes [27] considered structural models for fission yeast
S. pombe and dismissed them based on existing data sets.
While differences might indeed be expected between eukary-
otes and bacteria, extensive modern single-cell data sets are
now available in, e.g., budding yeast [28], and could be used
to address the question [26]. It will also be of great interest
to determine whether other non-rod-shaped organisms,
particularly those that exhibit tip growth and/or nonuniform
morphologies, including mycobacteria, hyphal fungi, and pro-
tists like Stentor, also add constant volume or maintain their
size through other independent mechanisms. We finally
remark that the size and the shape of cells play a major role
in their physiology in multicellular organisms as well, namely
during Xenopus embryogenesis [29].

Hierarchy of Growth Parameters and the Meaning of
Biological Noise
Weshowed that only two parameters, the elongation rate a and
the added sizeD, are sufficient to reproduce thedistributions of
all growth and division parameters of both E. coli andB. subtilis
in all growth conditions without any adjustable parameters
(Equation 1 and Figure 4C; Supplemental Information). We
thus propose that a and D represent two basic controls of
physiology and size homeostasis and that the size at birth
and division, as well as generation time, are slaved to them.
Ordering the variances of the rescaled distributions, the dis-

tribution of the septum position s1/2 is the smallest, and the
added size D is the largest (Figure 4A). Previously, sizer was
supported because the coefficient of variance for division
size (10%) was smaller than that for generation time (40%–
60%) [19]. Therefore, interpreting coefficient of variance as a
biological ‘‘noise’’ should be taken with caution since D is a
basic control parameter for size homeostasis, yet D shows
the largest variability.

Conclusions
Wedemonstrated that both E. coli andB. subtilismaintain cell-
size homeostasis by adding a constant size D. The constant D
model quantitatively explains the distributions of growth-
related parameters and their variability. How bacteria can
overlap their cell cycles without making fatal mistakes in the
absence of eukaryotic-like cell-cycle checkpoints is a long-
standing open question [30, 31]. Our results provide a new

A B C

Figure 3. Mechanism of Size Homeostasis Following the Adder Principle

(A–C) For all newborn cells regardless of their size, if the cells always add a constant D and divide in the middle, their respective newborn size automatically
converges to D (A). If D is subject to fluctuations without correlations from one generation to the next, and the cell divides in the middle with some precision,
the newborn size on average still converges to hDi. Our data confirm this size homeostasis mechanism for both E. coli (B) and B. subtilis (C). Data in (B) and
(C) show the average from all growth conditions used for each organism.
See also Movie S1.

388

Cell-Size Control and Homeostasis in Bacteria



Differences between the models are (very) small

For further comparison with the microfluidic experiments,
we run a complete set of simulations covering the range of
experimental values of sm and sj found by Taheri et al. [8]:
0.1 ! sj! 0.3, and 0.025 ! sm ! 0.15. The initial number of
bacteria is sampled from a Poisson distribution with a Poisson
parameter l ¼ 0.75. Bacteria are allowed to grow and divide
for approximately 4 h, a time close to the duration of the expo-
nential phase in our experiments. The final distributions of the
number of bacteria, rescaled by their mean, are compared
using a two-sampled Kolmogorov–Smirnov test [28] to
know whether the outputs of the three models are distinguish-
able. For each point of the [sm, sj] mesh and each of the
three models, we find that there always exists a distribution
belonging to another model that is statistically indistinguish-
able from it at a 5% significance level, as shown in electronic
supplementary material, figure S1. For experimental purposes,
the three division models are therefore indistinguishable at the
population level and give the same results. Therefore, any
model can be used to predict the growth of a population. In
the following, we extend the classical timer model of Bellman
& Harris [23] to describe a larger set of experimental con-
ditions, which allows us to obtain analytical predictions on
the population behaviour.

2.2. A generalized Bellman – Harris model
2.2.1. Classical case studied by Bellman and Harris
The timer model was studied by Bellman and Harris in their
classic paper [23]. Their original assumption was that the div-
ision times of all bacteria are independent and picked from a
continuous stochastic distribution which is constant over
time. Starting from one cell at t ¼ 0, the B-H model derives
several properties of the probability distribution of the
number of cells as a function of time N(t). For instance, it

shows that all normalized moments !mk of N(t) grow exponen-
tially with the same growth rate a, and are equivalent to nkeat

when t goes to infinity, which we will write as !mk ! nk eat in
what follows (see electronic supplementary material for
precise definition).

Here we consider that bacteria divide after a time td,
which is normally distributed around a mean value t0 with
standard deviation s. This distribution allows us to define a
microscopic coefficient of variation cvm ¼ s/t0 that describes
the variability between individual cells. In this case, the
value of the growth rate a can be related to t0 and cvm (see
electronic supplementary material for derivation) as

a ¼ ln (2)
t0

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 2 ln (2) cv2

m

q : (2:3)

The growth rate is therefore a product of two terms: the first
term is the ratio ln(2)/t0, which is the growth rate when the het-
erogeneity of division times is neglected. The second term is
larger than one and increases with cvm. It predicts that a
larger cell-to-cell variability of the division times increases
the apparent growth rate of the whole population, which was
confirmed experimentally by Hashimoto et al. [29]. Although
this dependence of a on cvm is verified numerically as shown
in figure 2a, the net effect on the growth rate is weak, remaining
below 5% for any value of cvm within a realistic range.

These observations are confirmed by Monte Carlo simu-
lations, the results of which are in excellent agreement with
the analytical prediction of equation (2.3), thus validating the
theoretical result, as shown in figure 2a. The divergence that is
observed between the numerical and theoretical results for
cvm . 0.3 is due to the increased apparition of negative division
times in the theory, which are removed from the simulations.

It is also interesting to obtain the prefactors n1 and n2 of
the mean (MN) and standard deviation (SDN) of the
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?1. Introduction 
We are interested in the following problem which is of possible biological, 

chemical, and physical interest. A particle existing at time 0 is assumed to have 
a life-length whose cumulative probability distribution is given by a function 
G(t). At the end of its life it is transformed into n similar particles with proba- 
bility qn , n _ 0. These new particles are taken to have the same life-length 
distribution and transformation probabilities as the original one, and the process 
now continues. Under the hypothesis that the life-length distribution and trans- 
formation probabilities for each particle are independent of its time of birth 
and the number of other particles existing at the time, the problem is to de- 
termine the distribution of the number of particles existing at time t, which we 
call Z(t). 

If G(t) = 1 - ea, where a is constant, we have the Markovian case where 
the state of the system at t depends only upon the number of particles present 
and is independent of their ages. The probability that a particle existing at t is 
transformed between t and t + At is aAt + o(At), independently of age and 
absolute time. In this case the integral equation obtained below for the gen- 
erating function of Z(t) reduces to a first order partial differential equation. 

If G(t) is a step-function with one step, we have the Galton-Watson family- 
tree model. 

The case where G(t) is a convolution of k distributions of the form 1 - e-a 
was treated by D. G. Kendall, [6]. In this case, the particle goes through k 
stages before it is transformed, and by considering jointly the numbers present 
in each stage at a given time the process is made Markovian. 

The problem of the age-structure of the particles at a given time is not treated 
in the present paper but can be approached by similar methods; see [5]. This 
problem has been treated by Kendall in [7], using different methods, and more 
recently by Bartlett and Kendall, [1]. 

For references, see Kendall, [7], and Harris, [5]. 
Setting h(s) = E 0 qn S where qn , as above, is the probability that a particle 

is transformed into n particles, our starting point is the fact that the generating 
function 

(1) F(s, t) = Esz2t(, t I Os < 1, 

I Expansion of results announced in Proceedings of the National Academy of Sciences 
Vol. 34 (1948), pp. 601-604. 
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And analytically it’s easier to use a timer model…
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Microscopic variability in 
division times

Macroscopic variability in 
population sizes

CVN (t) = SDN (t)/MN (t) = n2/n1



Distribution of population sizes as a function of time

All moments grow exponentially, with the same growth rate  ↵



Asymptotic shape depends on cvµ 

50 Chapter 3. Distribution of the number of cells with time : the

Bellman-Harris model

FIGURE 3.3: Theory and simulations for the Bellman-Harris
model with a Gaussian distribution for the division times. Sim-
ulations were made with t0 = 21 min, 2000 simulations going
from t = 0 to t = 5 h. (A) and (B) theory (lines) and simulations
(stars) (A) Gain in the exponential growth rate as a function of
the cellular-level coefficient of variation cvµ. Orange circles :
growth rate gain computed by numerical solving of eq.(3.6) (B)
Macroscopic coefficient of variation CVN as a function of cvµ.
(C) Asymptotic shape of the distribution of N(t)/exp(at). The
curves show a kernel fit of the simulated curves. (D) For two
values of cvµ, distribution of the log of N(t)/exp(at) and Gaus-
sian fit. We get a p-value p < 0.05 in a Kolmogorov-Smirnov

test for normality [133] for all values of cvµ > 0.1.

For smaller values of cvµ, cells are almost synchronized, and it is more diffi-
cult to assess the converging shape of the stationary distribution for t going
to infinity, but we believe that the log-normal shape must hold. The shape
of the rescaled distribution is then skewed to the right, and as expected for a
log-normal distribution, the bigger its variance, the more it is asymmetrical.
The shape of the resulting distributions in noisy exponential processes was
studied in detail, for a slightly different formal background, in ref. [85].

Hitting Times in a Bellman-Harris model

Another interesting feature of the Bellman-Harris model is the distribution
of the hitting times, which is the time required to reach a certain number
of cells in the droplet. We have not made analytical predictions for these
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model with a Gaussian distribution for the division times. Sim-
ulations were made with t0 = 21 min, 2000 simulations going
from t = 0 to t = 5 h. (A) and (B) theory (lines) and simulations
(stars) (A) Gain in the exponential growth rate as a function of
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growth rate gain computed by numerical solving of eq.(3.6) (B)
Macroscopic coefficient of variation CVN as a function of cvµ.
(C) Asymptotic shape of the distribution of N(t)/exp(at). The
curves show a kernel fit of the simulated curves. (D) For two
values of cvµ, distribution of the log of N(t)/exp(at) and Gaus-
sian fit. We get a p-value p < 0.05 in a Kolmogorov-Smirnov

test for normality [133] for all values of cvµ > 0.1.

For smaller values of cvµ, cells are almost synchronized, and it is more diffi-
cult to assess the converging shape of the stationary distribution for t going
to infinity, but we believe that the log-normal shape must hold. The shape
of the rescaled distribution is then skewed to the right, and as expected for a
log-normal distribution, the bigger its variance, the more it is asymmetrical.
The shape of the resulting distributions in noisy exponential processes was
studied in detail, for a slightly different formal background, in ref. [85].

Hitting Times in a Bellman-Harris model

Another interesting feature of the Bellman-Harris model is the distribution
of the hitting times, which is the time required to reach a certain number
of cells in the droplet. We have not made analytical predictions for these

All moments grow exponentially, with the same growth rate  ↵
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The basic principle of a digital approach relies on the
Poisson theory for finding a rare event in a random experi-
ment. Assuming that cells are homogeneously distributed in
the original suspension, that droplets are monodisperse, and
that the number of cells in a given droplet is independent
from the contents of other droplets, the distribution of the
number of cells per droplet follows a Poisson law.40 The
probability of finding k colonies in a droplet is then given by:

(1)

where λ is the average number of colonies per droplet. The
probability of having an empty droplet is therefore:

(0) = e−λ, (2)

which allows us to estimate the initial number of cells per
droplet, , by counting the fraction p̂− of empty droplets on
the chip:40

 ≃ −ln(p̂−). (3)

The 95% confidence interval on  can likewise be estimated,
see Material and methods. For the microfluidic device
containing 1495 independent droplets of volume 2 nL, the
range of concentrations that can be estimated with a relative
error smaller than 20% spans two orders of magnitude, from
∼7 × 104 to ∼3 × 106 cells per mL.

We experimentally verify that the number of cells per
droplet follows a Poisson distribution by counting the num-
ber of colonies in each solidified gel drop, as shown in
Fig. 3a–c. The resulting distribution is fitted with a Poisson
distribution using λ as the sole fitting parameter. We observe
a good agreement between the measured and fitted distribu-
tions, which can be attributed to the weak physical interac-
tions between bacteria during the loading process and to the
good monodispersity of the compartment sizes in the chip.

As a proof of concept of the digital enumeration method,
a sample of E. coli with an initial known concentration of 1
cell per nL is loaded on the device and scanned on a low-

Fig. 3 Digital enumeration: (a) snapshot of the chip with 1495 individual droplets containing 3D colonies of fluorescent bacteria. Scale bar: 2 mm.
(b) Zoomed view on the anchors, the droplets, and the encapsulated fluorescent 3D bacterial colonies. Left: Bright field image. Right: Fluorescence
image. Scale bar: 100 μm. (c) Experimental distribution of the number of colonies per droplet (dots), and best fit to a Poisson distribution (bars). λ =
1.58 indicates that there are on average 1.58 cells per drop. (d) Low-resolution image taken on a slide scanner. A digital approach allows the con-
centration in the initial sample to be extracted from the number of positive droplets for a wide range of concentrations. Over the non-empty wells
detected, we measured 941 positive and 135 negative droplets. Here, the estimated number of initial cells per droplet is  ∈ [1.92; 2.25].
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distribution, respectively. The expressions of n1 and n2 are
functions of t0 and s, the parameters of the Gaussian law for
single cell division, as derived in the electronic supplementary
material, section S2. Then the macroscopic coefficient of
variation, defined as CVN(t) ¼ SDN(t)/MN(t) asymptotically
converges to a constant value CVN(1) ¼ n2/n1 that can be
expressed as follows (see the electronic supplementary
material for derivation):

CV2
N(1) ¼ n2

n1

! "2

BH
¼ ea2s2 " 1

1" (ea2s2=2)
: (2:4)

This expression depends strongly on cvm, as shown in
figure 2b. Therefore, although the cell-to-cell variability has
only a small effect on the total growth rate, its signature is
clear on the macroscopic coefficient of variation between
different realizations. Again, the theoretical prediction is
validated by the numerical Monte Carlo simulations.

Another consequence of the B-H model is that the asymp-
totic distribution of the number of cells, when rescaled by
exp(at), converges to a stationary distribution. This predic-
tion is also recovered by the numerical simulations, as
shown in electronic supplementary material, movie S1,
where the distribution of N(t)/exp(at) is seen to converge
to a constant curve at late times. Similarly to CVN,

the shape of this distribution depends strongly on the
single-cell parameters, as plotted in figure 2c.

Taken together, the above results show the effects of the
cell-to-cell variability on the population-scale growth. While
the impact on the exponent a is always weak, the shape of
the asymptotic probability distribution of N(t) is very sensitive
to the value of cvm. This observation suggests that the variabil-
ity between cells can be inferred from a large number of
population-scale measurements without the need for single-
cell resolution. However taking into account other sources of
variability in the practical situations will limit such inference,
as demonstrated in the following sections.

2.2.2. Poisson distributed initial number of cells
When bacteria are encapsulated in droplets, the initial number
of bacteria per droplet follows a Poisson distribution of par-
ameter l [30]. The probability of having N0 bacteria in a
droplet is given by: Pl(N0) ¼ lN0 e"l=N0! [26], where l is the
average number of bacteria per droplet. In a microfluidic set-
up, the Poisson distribution leads to some droplets being
empty, but we solely consider the growth in droplets contain-
ing bacteria. As bacteria are assumed to be independent from
one another, this modification of the initial number of bacteria
does not change the asymptotic behaviour of the distribution:
the kth moment of the distribution of N(t) grows exponentially
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Figure 2. (a – c) Theory and simulations for the B-H model with a Gaussian distribution for the division times. Simulations were made with t0 ¼ 21 min, 2000
simulations going from t ¼ 0 to t ¼ 5 h. (a,b) Theory (lines) and simulations (stars). (a) Gain in the exponential growth rate as a function of the cellular-level
coefficient of variation cvm. (b) Macroscopic coefficient of variation CVN as a function of cvm. (c) Asymptotic shape of the distribution of N(t)/exp(at). The curves
show a kernel fit of the simulated curves. (d – f ) Theory and simulations for the B-H model with a Gaussian distribution for the division times and a Poisson
distribution for the initial number of cells. (d ) Contributions of the B-H process (coloured lines, term (1) in equation (2.12)) and of the initial Poisson distribution
(black line, term (2) in equation (2.12)) to the square of CVN, as a function of the parameter of the Poisson distribution and for different values of cvm. (e) CVN,
asymptotic value coefficient of variation of the number of cells as a function of cvm, theory (lines) and simulations (stars). ( f ) Asymptotic shape of the distribution of
N(t)/exp(at) (kernel fit, simulations only), for l ¼ 1. (Online version in colour.)
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while the pre-factor of the standard deviation SDl(t) ⇠ n2(l)eat is:

n2(l) =

s
l

1 � e�l

✓
n22 +

1 � (l + 1) e�l

1 � e�l
n12

◆
. (3.32)

The expression for n1(l) is expected because of the independence of the
bacterial division times: the mean number of cells at time t is simply the
product of the mean number of cells per non-empty droplet and the mean
of the classical Bellman-Harris case. These expressions are systematically
checked numerically on Fig. 3.7(A).

FIGURE 3.7: Comparison between the theoretical predictions
(straight lines) of the Bellman-Harris model and Monte-Carlo
simulations (stars). The law for the division time of individual
bacteria is a Gaussian with mean t0 = 23 min and standard
deviation s = 0.25t0. (A) n1(l) and n2(l) as a function of the
Poisson parameter l (2000 simulations for each l). (B) Effect
of an evolving distribution of division times. The first bacterial
generation divides with a mean time t1 = 2t0, and a standard
deviation s1. Subsequent division times follow a normal law of
mean t0 and standard deviation s0. n1 and n2 depend on s1/t1.
The initial number of cells follows a Poisson distribution with a
parameter l = 0.5. Result of 2000 independent simulations for

each s1.

To understand the expression for the standard deviation better, it is useful
to divide it by the mean and take the square. Doing so, we obtain the square
of the coefficient of variation CVl for t going to infinity:

CV2
l (•) =

✓
n2
n1

◆2

l
=

1 � e�l

l

✓
n2
n1

◆2

BH| {z }
(1)

+
1 � (l + 1) e�l

l| {z }
(2)

. (3.33)

The variance of the population size is thus the sum of two terms. The
first one is the variance due to the stochastic nature of the Bellman-Harris
process, corrected to take into account only the wells that contain bacteria.
The second term is an additional variance due to the initial Poisson distri-
bution. The contribution of the initial Poisson distribution becomes greater
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The variance of the population size is thus the sum of two terms. The
first one is the variance due to the stochastic nature of the Bellman-Harris
process, corrected to take into account only the wells that contain bacteria.
The second term is an additional variance due to the initial Poisson distri-
bution. The contribution of the initial Poisson distribution becomes greater
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than the intrinsic variance of the Bellman-Harris process when the Poisson
parameter is larger than ⇡ 0.5, see black line in Fig. 3.8(A). The dominant
effect on the variance of the number of cells is then the variance due to the
initial distribution, and not the heterogeneity of the division times. This can
be seen clearly in Fig. 3.8(B): the coefficient of variation of the population
now depends weakly on cvµ but cases with different values of l can clearly
be distinguished. Simulations confirm this results, and highlight another sur-
prising effect: the numerically computed values tend to differ more from the
theoretical prediction for small values than for large values of l. Indeed, for
small values of l, fewer droplets contain bacteria, and the stochastic diver-
gence from the prediction is bigger, even with 2000 simulations.

FIGURE 3.8: Theory and simulations for the Bellman-Harris
model with a Gaussian distribution for the division times and
a Poisson distribution for the initial number of cells. (A) Con-
tributions of the Bellman-Harris process (colored lines, term (1)
in eq. (3.33)) and of the initial Poisson distribution (black line,
term (2) in eq. (3.33)) to the square of CVN , as a function of
the parameter of the Poisson distribution and for different val-
ues of cvµ. (B) CVN , asymptotic value coefficient of variation
of the number of cells as a function of cvµ, theory (lines) and
simulations (stars). (C) Asymptotic shape of the distribution of

N(t)/ exp(at) (kernel fit, simulations only), for l = 1

Note that, as in the classical Bellman-Harris case, the asymptotic distri-
bution of the number of cells remains self-similar (see Supp. Movie 4 in
Appendix E). The shape of the self-similar distribution now shows peaks,
each peak corresponds to the initial number of bacteria in the droplet, see
Fig. 3.8(C). The width of each peak stills depends on the variability of the
division times. Indeed, if we consider only the droplets containing initially
N0 bacteria,

NN0(t) =
N0

Â
k=1

Nk(t). (3.34)

All the Nk(t) are independent and identically distributed, thus we have, as
N0 is fixed :

E (Nk(t)) =
N0

Â
k=1

E (Nk(t)) ⇠ N0n1eat, (3.35)
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Appendix E). The shape of the self-similar distribution now shows peaks,
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FIGURE 3.13: (A) Time-lapse image of E. coli cells dividing un-
der a 90X objective. The images correspond to t=0, 21, 42, 63,
84, and 105 min respectively. (B) Density of the division times
obtained from the time-lapse images, for E. coli, and for the first
four generations. (C) Density of the division times obtained
from the time-lapse images, for B. subtilis and for the first four
generations. (D) Fitted values of the mean division times and

their standard deviations, for both strains.

begun to grow in 3D, out of focus... Note though that even between the third
and fourth generation, the difference is already quite low (Fig. 3.13(B)). This
simulation scheme as already been used in the literature ([80],[81]).

3.3.3 Full comparison

The distribution of division times from the single-cell experiments can now
be used as inputs to obtain theoretical and numerical predictions. The Pois-
son parameter is obtained directly from the chip experiment by counting the
number of positive droplets, as explained in Chapter 2.

Growth rate

The first thing that we can compare is the value of the growth rate. If we take
the theoretical formula (3.14), and inject the values of tau0 and cvµ that we
have found for the individual cells, we obtain aB-H = 2.01h�1. This is very
close to the values discussed above (to recall,hadropi ⇡ 2.14 ± 0.08h�1 for the
mean of all the droplets). This bolsters us in our hope that the division times
that we have found in our agar pads are relevant for the comparison with

Adaptation to a new environment
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from the time-lapse images, for B. subtilis and for the first four
generations. (D) Fitted values of the mean division times and

their standard deviations, for both strains.

begun to grow in 3D, out of focus... Note though that even between the third
and fourth generation, the difference is already quite low (Fig. 3.13(B)). This
simulation scheme as already been used in the literature ([80],[81]).

3.3.3 Full comparison

The distribution of division times from the single-cell experiments can now
be used as inputs to obtain theoretical and numerical predictions. The Pois-
son parameter is obtained directly from the chip experiment by counting the
number of positive droplets, as explained in Chapter 2.

Growth rate

The first thing that we can compare is the value of the growth rate. If we take
the theoretical formula (3.14), and inject the values of tau0 and cvµ that we
have found for the individual cells, we obtain aB-H = 2.01h�1. This is very
close to the values discussed above (to recall,hadropi ⇡ 2.14 ± 0.08h�1 for the
mean of all the droplets). This bolsters us in our hope that the division times
that we have found in our agar pads are relevant for the comparison with
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at time t is N(t) ¼ N1(t 2 t1) þ N2(t 2 t1), where N1 and N2 are
independent and follow the same law. Therefore, the mean
number of bacteria is E(N) ¼ E(N1)þ E(N2) ¼ 2E(N1). After
the first division, all daughter bacteria divide according to
the classical B-H process. The asymptotic equivalent of
N1(t 2 t1) for t!1 is then given by

E(N1(t# t1)) ! n1 ea(t#t1): (2:13)

To obtain the expected value E(N(t)) of N(t), we multiply by
r1 and integrate over all possible values of t1

E(N(t)) ! 2n1 eat
ð1

0
e#at1r1(t1) dt1: (2:14)

Calling X1 ¼ e#at1 , the mean number of bacteria can be
expressed as

E(N(t)) ! 2n1E(X1)eat: (2:15)

Similarly, we obtain

E(N2
1 ) ! n2

1
2E(X2)

1# 2E(X2)
e2a(t#t1), (2:16)

which leads to

E(N(t)2) ! 2n2
1

E(X2
1)

1# 2E(X2)
e2at: (2:17)
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Figure 3. (a – d) B-H model and simulations for a different first generation with t1 ¼ 2t0, varying s1. (a) Schematic view of the division scheme in this case: a
single bacterium divides into two bacteria according to a division law with density function r1, with mean t1 and standard deviation s1. The two daughter bacteria
divide according to rs and give birth to an offspring of size N1 and N2. (b) Theoretical plot of the contributions to CV2

N , when varying s1, for different values of cvm.
Straight lines: contribution of the B-H process, term (1) in equation (2.18). Dotted lines: contribution of the different distribution of division times for the first
generation, term (2) in equation (2.18). (c) CVN, asymptotic value coefficient of variation of the number of cells as a function of cvm: theory (lines) and simulations
(stars), for different values of cv1 ¼ (s1/t1). (d ) Shape of the distribution of N(t)/exp(at) (kernel fit, simulations only), for cv1 ¼ 0.3. (e,f ) Theory and simulations
for the mixed case where the first generation is different and the cells are initially distributed following a Poisson distribution. (e) CVN, asymptotic value coefficient of
variation of the number of cells as a function of cvm, theory (lines) and simulations (stars). ( f ) Shape of the distribution of N(t)/exp(at) (kernel fit, simulations only),
for l ¼ 1 and cv1 ¼ 0.3. (Online version in colour.)
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3.2. Theoretical and numerical results 59

FIGURE 3.9: Schematic view of the division scheme in the case
where the first division time is different: a single bacterium di-
vides into 2 bacteria according to a division law with density
function r1, with mean t1 and standard deviation s1. The two
daughter bacteria divide according to rs and give birth to an

offspring of size N1 and N2.

To obtain the expected value E (N(t)) of N(t), we multiply by r1 and inte-
grate over all possible values of t1:

E(N(t)) ⇠ 2n1eat
Z •

0
e�at1r1(t1)dt1. (3.39)

Calling X1 = e�at1 , the mean number of bacteria can be expressed as:

E(N(t)) ⇠ 2n1E(X1)eat. (3.40)

Similarly, we obtain:

E(N2
1 ) ⇠ n2

1
2E(X2)

1 � 2E(X2)
e2a(t�t1), (3.41)

which leads to

E(N(t)2) ⇠ 2n2
1

E
�
X2

1
�

1 � 2E(X2)
e2at. (3.42)

These expressions are systematically compared to the simulations on Fig. 3.7(B).
In the case of Gaussian division times, we know that the random variable X1
is a log-normal variable, and its moments can be easily computed.

From this last result we obtain the expression of the square of the coef-
ficient of variation in the case where only the first generation is changing,
and compare it to the classical Bellman-Harris expression. The coefficient of
variation does not depend on t1 but solely on s1:

CV2
s1
(•) =

✓
n2
n1

◆2

s1

= ea2(s2
1�s2)

✓
n2
n1

◆2

BH| {z }
(1)

+ ea2(s2
1�s2) � 1

| {z }
(2)

. (3.43)

This is again the sum of two terms, the first one being directly linked
to the intrinsic variance of the Bellman-Harris process, and the second one
being an additional variance due to a first generation time that is different

60 Chapter 3. Distribution of the number of cells with time : the

Bellman-Harris model

from the following ones. The effect is then similar to the Poisson case: the
variance of the distribution of the number of cells is increased when s1 > s,
which is generally the case in experiments. When this variance increases,
the contribution of the first generation rapidly becomes dominant over the
contribution of the Bellman-Harris process (see Fig. 3.10(A)), meaning that
the variance of the distribution is mostly due to the early times, and not to
the cell-to-cell heterogeneity of division times, see Fig. 3.10(B). Another way
to see this result is look at the shape of the self-similar distribution, which is
almost independent of the value of the coefficient of variation of the division
times, see Fig. 3.10(C).

FIGURE 3.10: Bellman-Harris model and simulations for a dif-
ferent first generation with t1 = 2t0, varying s1. (A) Theoretical
plot of the contributions to CV2

N , when varying s1, for different
values of cvµ. Straight lines: contribution of the Bellman-Harris
process, term (1) in eq. (3.43). Dotted lines: contribution of the
different distribution of division times for the first generation,
term (2) in eq. (3.43). (B) CVN , asymptotic value coefficient of
variation of the number of cells as a function of cvµ: theory
(lines) and simulations (stars), for different values of cv1 = s1

t1
.

(C) Shape of the distribution of N(t)/exp(at) (kernel fit, simu-
lations only), for cv1 = 0.3.

3.2.5 Putting it all together: Three sources of stochasticity

Now what happens when we mix the two effects, i.e. have an initial number
of cells per droplet following a Poisson distribution, and the first generation
of bacteria having a different generation time? To answer this question, we
inject eqs. (3.42) and (3.40) into eq. (3.23). We find that the two effects add up,
leading to the following formula for CV2

N:

CV2
s1,l(•) =

✓
n2
n1

◆2

s1,l
=

1 � e�l

l
ea2(s2

1�s2)
✓

n2
n1

◆2

BH

+
1 � e�l

l

⇣
ea2(s2

1�s2) � 1
⌘

+
1 � (l + 1) e�l

l
. (3.44)
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3.2.5 Putting it all together: Three sources of stochasticity

Now what happens when we mix the two effects, i.e. have an initial number
of cells per droplet following a Poisson distribution, and the first generation
of bacteria having a different generation time? To answer this question, we
inject eqs. (3.42) and (3.40) into eq. (3.23). We find that the two effects add up,
leading to the following formula for CV2
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FIGURE 3.15: Comparison between the model (yellow), nu-
merical (orange) and experimental results (blue)(same experi-
ment as in Chapter 2). (A) Mean number of cells as a function
of time MN(t), (B) Standard deviation of the number of cells
as a function of time SDN(t), (C) Coefficient of variation of the
number of cells as a function of time CVN . Dashed lines corre-
spond to the asymptotic value of CVN when the sole source of
variability is the cell division time (classical B-H theory, purple),
in the presence of an initial Poisson distribution of cells (cyan),
and in the presence of both a Poisson distribution of cells and
an evolving distribution of division times (green). (D) Shape of
the distribution of N(t)/ exp(at), numerical and experimental,

kernel fit.

between the values of the mean and standard deviation. Yet, the experimen-
tal value of the plateau during this period is in good agreement with the ex-
pected theoretical value, see Fig. 3.15(C). Note that all sources of variability
need to be taken into account to obtain a good agreement between the exper-
imental and theoretical CVN. Considering solely stochastic cell division, as in
the classical Bellman-Harris model, significantly underestimates the experi-
mental CVN (dashed purple line). As more sources of variability are added
to the model, the coefficient of variation increases. The effect of both the ini-
tial Poisson distribution (cyan dashed line), and of the generation-dependent
division times (green dashed line) on the value of the coefficient of variation
are shown in Fig. 3.15(C).
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number of positive droplets. We discuss here the results
obtained for E. coli. Similar results were obtained for B. subtilis,
see the electronic supplementary material.

The B-H theory, as well as the classical belief in micro-
biology [37], predict that the number of bacteria in all
droplets should grow exponentially with the same exponen-
tial growth rate, at least while nutrients are abundant in the
droplet. Experimentally, we recover this exponential growth
for all the colonies, see figure 4e, and the mean of the individ-
ual growth rates is aexp ¼ 2.14+0.08 h21, in very good
agreement with the theoretical prediction aB2H ¼ 2.01 h21.

All moments of the distribution of the number of cells are
predicted to also grow with the same growth rate as the indi-
vidual curves. The comparisons are shown in figure 5 for the
experimental mean and standard deviation. We do observe
an exponential growth, and the agreement in terms of
growth rate is again very good: we find a growth rate for the
mean of amean

exp ¼ 2:19 h"1 and a growth rate for the standard
deviation as:d:

exp ¼ 2:22 h"1. Up to the fifth moment of the distri-
bution, we recover an exponential growth experimentally, see
the electronic supplementary material.

However the value of this growth rate cannot distinguish
between the simple B-H model of §2.2.1 and the complete
model of §2.2.4. This distinction can be made by measuring
the coefficient of variation CVN of the number of bacteria,

which is predicted to be constant in the exponential phase
by all of the above models. Such a behaviour is indeed
observed in the simulations (figure 5c). The experimental
coefficient of variation is also approximately constant, but
only for a short period of 1 h (see figure 5c). Indeed the expo-
nential growth of the mean and standard deviation makes it
difficult to obtain a real plateau: a slight difference in the
observed growth rates of theses two quantities leads to an
exponentially increasing difference between the values of
the mean and standard deviation. Yet, the experimental
value of the plateau during this period is in good agreement
with the expected theoretical value (figure 5c). Note that all
sources of variability need to be taken into account to obtain
a good agreement between the experimental and theoretical
CVN. Considering solely stochastic cell division, as in the clas-
sical B-H model, significantly underestimates the experimental
CVN (dashed purple line). As more sources of variability are
added to the model, the coefficient of variation increases. The
effect of both the initial Poisson distribution (cyan dashed
line), and of the generation-dependent division times (green
dashed line) on the value of the coefficient of variation are
shown in figure 5c.

Note that the proportionality coefficient between the flu-
orescent signal and the number of bacteria cancels out when
computing the ratio n2/n1. As such raw experimental data
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Figure 5. Comparison between the model (yellow), numerical (orange) and experimental results (blue) (same experiment as in figure 4). (a) Mean number of cells
as a function of time MN(t). (b) Standard deviation of the number of cells as a function of time SDN(t). (c) Coefficient of variation of the number of cells as a function
of time cv. Dashed lines correspond to the asymptotic value of cv when the sole source of variability is the cell division time (classical B-H theory), in the presence of
an initial Poisson distribution of cells, and in the presence of both a Poisson distribution of cells and an evolving distribution of division times. (d ) Shape of the
distribution of N(t)/exp(at), numerical and experimental, kernel fit. (Online version in colour.)
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FIGURE 3.15: Comparison between the model (yellow), nu-
merical (orange) and experimental results (blue)(same experi-
ment as in Chapter 2). (A) Mean number of cells as a function
of time MN(t), (B) Standard deviation of the number of cells
as a function of time SDN(t), (C) Coefficient of variation of the
number of cells as a function of time CVN . Dashed lines corre-
spond to the asymptotic value of CVN when the sole source of
variability is the cell division time (classical B-H theory, purple),
in the presence of an initial Poisson distribution of cells (cyan),
and in the presence of both a Poisson distribution of cells and
an evolving distribution of division times (green). (D) Shape of
the distribution of N(t)/ exp(at), numerical and experimental,

kernel fit.

between the values of the mean and standard deviation. Yet, the experimen-
tal value of the plateau during this period is in good agreement with the ex-
pected theoretical value, see Fig. 3.15(C). Note that all sources of variability
need to be taken into account to obtain a good agreement between the exper-
imental and theoretical CVN. Considering solely stochastic cell division, as in
the classical Bellman-Harris model, significantly underestimates the experi-
mental CVN (dashed purple line). As more sources of variability are added
to the model, the coefficient of variation increases. The effect of both the ini-
tial Poisson distribution (cyan dashed line), and of the generation-dependent
division times (green dashed line) on the value of the coefficient of variation
are shown in Fig. 3.15(C).
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number of positive droplets. We discuss here the results
obtained for E. coli. Similar results were obtained for B. subtilis,
see the electronic supplementary material.

The B-H theory, as well as the classical belief in micro-
biology [37], predict that the number of bacteria in all
droplets should grow exponentially with the same exponen-
tial growth rate, at least while nutrients are abundant in the
droplet. Experimentally, we recover this exponential growth
for all the colonies, see figure 4e, and the mean of the individ-
ual growth rates is aexp ¼ 2.14+0.08 h21, in very good
agreement with the theoretical prediction aB2H ¼ 2.01 h21.

All moments of the distribution of the number of cells are
predicted to also grow with the same growth rate as the indi-
vidual curves. The comparisons are shown in figure 5 for the
experimental mean and standard deviation. We do observe
an exponential growth, and the agreement in terms of
growth rate is again very good: we find a growth rate for the
mean of amean

exp ¼ 2:19 h"1 and a growth rate for the standard
deviation as:d:

exp ¼ 2:22 h"1. Up to the fifth moment of the distri-
bution, we recover an exponential growth experimentally, see
the electronic supplementary material.

However the value of this growth rate cannot distinguish
between the simple B-H model of §2.2.1 and the complete
model of §2.2.4. This distinction can be made by measuring
the coefficient of variation CVN of the number of bacteria,

which is predicted to be constant in the exponential phase
by all of the above models. Such a behaviour is indeed
observed in the simulations (figure 5c). The experimental
coefficient of variation is also approximately constant, but
only for a short period of 1 h (see figure 5c). Indeed the expo-
nential growth of the mean and standard deviation makes it
difficult to obtain a real plateau: a slight difference in the
observed growth rates of theses two quantities leads to an
exponentially increasing difference between the values of
the mean and standard deviation. Yet, the experimental
value of the plateau during this period is in good agreement
with the expected theoretical value (figure 5c). Note that all
sources of variability need to be taken into account to obtain
a good agreement between the experimental and theoretical
CVN. Considering solely stochastic cell division, as in the clas-
sical B-H model, significantly underestimates the experimental
CVN (dashed purple line). As more sources of variability are
added to the model, the coefficient of variation increases. The
effect of both the initial Poisson distribution (cyan dashed
line), and of the generation-dependent division times (green
dashed line) on the value of the coefficient of variation are
shown in figure 5c.

Note that the proportionality coefficient between the flu-
orescent signal and the number of bacteria cancels out when
computing the ratio n2/n1. As such raw experimental data
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Figure 5. Comparison between the model (yellow), numerical (orange) and experimental results (blue) (same experiment as in figure 4). (a) Mean number of cells
as a function of time MN(t). (b) Standard deviation of the number of cells as a function of time SDN(t). (c) Coefficient of variation of the number of cells as a function
of time cv. Dashed lines correspond to the asymptotic value of cv when the sole source of variability is the cell division time (classical B-H theory), in the presence of
an initial Poisson distribution of cells, and in the presence of both a Poisson distribution of cells and an evolving distribution of division times. (d ) Shape of the
distribution of N(t)/exp(at), numerical and experimental, kernel fit. (Online version in colour.)
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• Variability comes from 3 sources:

Stochasticity in division times (classical Bellman-Harris)

Adaptation to a new environment

Poisson distribution of initial number of cells
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number of positive droplets. We discuss here the results
obtained for E. coli. Similar results were obtained for B. subtilis,
see the electronic supplementary material.

The B-H theory, as well as the classical belief in micro-
biology [37], predict that the number of bacteria in all
droplets should grow exponentially with the same exponen-
tial growth rate, at least while nutrients are abundant in the
droplet. Experimentally, we recover this exponential growth
for all the colonies, see figure 4e, and the mean of the individ-
ual growth rates is aexp ¼ 2.14+0.08 h21, in very good
agreement with the theoretical prediction aB2H ¼ 2.01 h21.

All moments of the distribution of the number of cells are
predicted to also grow with the same growth rate as the indi-
vidual curves. The comparisons are shown in figure 5 for the
experimental mean and standard deviation. We do observe
an exponential growth, and the agreement in terms of
growth rate is again very good: we find a growth rate for the
mean of amean

exp ¼ 2:19 h"1 and a growth rate for the standard
deviation as:d:

exp ¼ 2:22 h"1. Up to the fifth moment of the distri-
bution, we recover an exponential growth experimentally, see
the electronic supplementary material.

However the value of this growth rate cannot distinguish
between the simple B-H model of §2.2.1 and the complete
model of §2.2.4. This distinction can be made by measuring
the coefficient of variation CVN of the number of bacteria,

which is predicted to be constant in the exponential phase
by all of the above models. Such a behaviour is indeed
observed in the simulations (figure 5c). The experimental
coefficient of variation is also approximately constant, but
only for a short period of 1 h (see figure 5c). Indeed the expo-
nential growth of the mean and standard deviation makes it
difficult to obtain a real plateau: a slight difference in the
observed growth rates of theses two quantities leads to an
exponentially increasing difference between the values of
the mean and standard deviation. Yet, the experimental
value of the plateau during this period is in good agreement
with the expected theoretical value (figure 5c). Note that all
sources of variability need to be taken into account to obtain
a good agreement between the experimental and theoretical
CVN. Considering solely stochastic cell division, as in the clas-
sical B-H model, significantly underestimates the experimental
CVN (dashed purple line). As more sources of variability are
added to the model, the coefficient of variation increases. The
effect of both the initial Poisson distribution (cyan dashed
line), and of the generation-dependent division times (green
dashed line) on the value of the coefficient of variation are
shown in figure 5c.

Note that the proportionality coefficient between the flu-
orescent signal and the number of bacteria cancels out when
computing the ratio n2/n1. As such raw experimental data
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Figure 5. Comparison between the model (yellow), numerical (orange) and experimental results (blue) (same experiment as in figure 4). (a) Mean number of cells
as a function of time MN(t). (b) Standard deviation of the number of cells as a function of time SDN(t). (c) Coefficient of variation of the number of cells as a function
of time cv. Dashed lines correspond to the asymptotic value of cv when the sole source of variability is the cell division time (classical B-H theory), in the presence of
an initial Poisson distribution of cells, and in the presence of both a Poisson distribution of cells and an evolving distribution of division times. (d ) Shape of the
distribution of N(t)/exp(at), numerical and experimental, kernel fit. (Online version in colour.)
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number of positive droplets. We discuss here the results
obtained for E. coli. Similar results were obtained for B. subtilis,
see the electronic supplementary material.

The B-H theory, as well as the classical belief in micro-
biology [37], predict that the number of bacteria in all
droplets should grow exponentially with the same exponen-
tial growth rate, at least while nutrients are abundant in the
droplet. Experimentally, we recover this exponential growth
for all the colonies, see figure 4e, and the mean of the individ-
ual growth rates is aexp ¼ 2.14+0.08 h21, in very good
agreement with the theoretical prediction aB2H ¼ 2.01 h21.

All moments of the distribution of the number of cells are
predicted to also grow with the same growth rate as the indi-
vidual curves. The comparisons are shown in figure 5 for the
experimental mean and standard deviation. We do observe
an exponential growth, and the agreement in terms of
growth rate is again very good: we find a growth rate for the
mean of amean

exp ¼ 2:19 h"1 and a growth rate for the standard
deviation as:d:

exp ¼ 2:22 h"1. Up to the fifth moment of the distri-
bution, we recover an exponential growth experimentally, see
the electronic supplementary material.

However the value of this growth rate cannot distinguish
between the simple B-H model of §2.2.1 and the complete
model of §2.2.4. This distinction can be made by measuring
the coefficient of variation CVN of the number of bacteria,

which is predicted to be constant in the exponential phase
by all of the above models. Such a behaviour is indeed
observed in the simulations (figure 5c). The experimental
coefficient of variation is also approximately constant, but
only for a short period of 1 h (see figure 5c). Indeed the expo-
nential growth of the mean and standard deviation makes it
difficult to obtain a real plateau: a slight difference in the
observed growth rates of theses two quantities leads to an
exponentially increasing difference between the values of
the mean and standard deviation. Yet, the experimental
value of the plateau during this period is in good agreement
with the expected theoretical value (figure 5c). Note that all
sources of variability need to be taken into account to obtain
a good agreement between the experimental and theoretical
CVN. Considering solely stochastic cell division, as in the clas-
sical B-H model, significantly underestimates the experimental
CVN (dashed purple line). As more sources of variability are
added to the model, the coefficient of variation increases. The
effect of both the initial Poisson distribution (cyan dashed
line), and of the generation-dependent division times (green
dashed line) on the value of the coefficient of variation are
shown in figure 5c.

Note that the proportionality coefficient between the flu-
orescent signal and the number of bacteria cancels out when
computing the ratio n2/n1. As such raw experimental data

1 2 3 4

N(t)/MN(t)
0

0.2

0.4

0.6

0.8

1.0

1.2

di
st

ri
bu

tio
n 

de
ns

ity
 (A

U
)

experiment
simulation

0 100 200 300 400
time (min)

0 100 200 300 400
time (min)

0 100 200 300 400
time (min)

1

102

104

1

102

104

m
ea

n 
N

(t
)

SD
 N

(t
)

experiments
simulation
theory

0.5

1.0

1.5

C
V

N

equation (2.4)

eq
ua

tio
n 

(2
.1

8)

equation (2.12)

equation (2.21)

(b)(a)

(c) (d )

Figure 5. Comparison between the model (yellow), numerical (orange) and experimental results (blue) (same experiment as in figure 4). (a) Mean number of cells
as a function of time MN(t). (b) Standard deviation of the number of cells as a function of time SDN(t). (c) Coefficient of variation of the number of cells as a function
of time cv. Dashed lines correspond to the asymptotic value of cv when the sole source of variability is the cell division time (classical B-H theory), in the presence of
an initial Poisson distribution of cells, and in the presence of both a Poisson distribution of cells and an evolving distribution of division times. (d ) Shape of the
distribution of N(t)/exp(at), numerical and experimental, kernel fit. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180935

9



Using the CV does not work

3.2. Theoretical and numerical results 61

We thus have the sum of three terms. The first one corresponds to the
contribution due to the variation of the division times of the cells. The sec-
ond one is the additional variance due to the first division time, but corrected
to take into account only the wells that contain bacteria because of the Pois-
son distribution. And the third one is the supplemental variance due to this
Poisson distribution. In this case, the intrinsic variance of the Bellman-Harris
process is now masked by two terms, and as a consequence, the coefficient
of variation CVN is even less dependent on the heterogeneity of the division
times cvµ, see Fig. 3.11(A). The shape of the distribution of N(t)/exp(at),
which is constant in time, is also almost independent of cvµ, see Fig. 3.11(B).

FIGURE 3.11: Theory and simulations for the mixed case where
the first generation is different and the cells are initially dis-
tributed following a Poisson distribution. (A) CVN , asymptotic
value coefficient of variation of the number of cells as a func-
tion of cvµ, theory (lines) and simulations (stars). (B) Shape of
the distribution of N(t)/exp(at) (kernel fit, simulations only),

for l = 1 and cv1 = 0.3.

The same analysis can be extended to the arbitrary case where the first
k generations follow different division laws, and combined with an initial
number of bacteria following a Poisson distribution. In the particular case
of our experiments, the distribution of division times reaches steady-state at
the fourth generation, and we find that at steady-state, the mean Mtn,sn(t) ⇠
n1(tn, sn)eat and the standard deviation SDtn,sn(t) ⇠ n2(tn, sn)eat with:
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(3.46)
Although these formulas are complex, they are the reflection of simple

ingredients and can easily and reliably be computed for a given set of pa-
rameters. Now let us try to see how they compare with the results of the
microfluidic experiments
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FIGURE 4.1: [Left] Simulated example of a trajectory for one
droplet: number of cells N(t) as a function of time(blue), and
exponential fit (orange), in log scale. [Right] Zoom and defini-
tion of the residual of the trajectory at time t, for a given time
step Dt. We first fit the growth rate a on the whole trajectory: it
is just the slope of the trajectory in log scale. Then, if the growth
was purely exponential, with rate a, from N(t), the value of the
trajectory in t + Dt would be N(t) exp(aDt). The residual is the
difference between this pure exponential growth and the actual

value of the trajectory in t + Dt, which is N(t + Dt).

4.2.2 Mathematical Properties

The residuals of the trajectories have two main properties, that we are going
to prove in this section for the simpler case of a Yule process (see defini-
tion below). The proof of the more complicated Bellman-Harris case will be
sketched, and the properties only checked on simulations. The two proper-
ties are the following:

1. The residuals are normally distributed, and centered around 0.

2. The variance increases exponentially with time, with rate a, and the
prefactor depends on the variability of the individual division times.

These two properties can be mathematically summarized as follows:

Resi ⇠ N
�
0, f

�
cvµ

�
exp (ati)

�
. (4.3)

Note that the form of the function f is unknown for the moment, and will be
discussed in the next section.

Exponential division times: Markov case

Let us first prove those properties in the simpler case of a Yule process [143].
A Yule process is a particular case of the more general Bellman-Harris pro-
cess that we have described in the previous chapter. In this case, the division
times of the bacteria are not Gaussian. Instead, the division times are picked
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tested in the previous chapter, but could not be applied in our case, once
again because of the impact of the early stages of the growth.

We have then developed a new method, based on following the trajec-
tories of individual droplets in time, and analyzing the deviation from pure
exponential growth. Droplets are followed throughout the exponential phase
of growth, and this allows us to get rid of the deleterious influence of the ran-
domness at early times. In this chapter, we expose how this theoretical and
numerical method works, sketch its mathematical proof, and demonstrate its
efficiency on numerical simulations. We will then study its applicability in
our experimental case.

4.2 Evolution of the residuals with time

4.2.1 Idea and definition

The idea developed here is to follow the individual trajectories of the droplets
with time. By trajectory, we mean the number of cells as a function of time
N(t). Indeed, these trajectories are not purely exponential, as would be the
case in a simple deterministic growth model. The deviation from the pure ex-
ponential growth is due to the stochasticity of the division process and thus
is linked to the variability of the individual division times. To quantify this
deviation from the pure exponential growth, we are going to measure cer-
tain quantities that we will call the residuals of the trajectories. Our hope is
to be able to infer the individual variability of the division times from this
measurement of the residuals. As this measure relies only on the stochastic
evolution of the trajectory, we can intuitively think that it will not be im-
pacted by the events happening at the initial stages of the division process
that caused the inference to fail in the previous chapter, such as the initial
Poisson distribution or the different division times for the first generations.

The idea that we will implement to measure the residuals is the follow-
ing: for a given trajectory N(t), we can estimate the exponential growth rate
a by fitting the log of the curve with a straight line. Then, to measure the
residual at some time t, we will measure the difference between the value of
the trajectory at time t + Dt and the expected value if the growth was purely
exponential, which is N(t)eaDt, as we can see on Fig. 4.1. The value of the
residual at time t is then:

Res(t) = N(t + Dt)� N(t)exp (aDt) . (4.1)

In the experiments, we have a set of observation points for each trajectory:
{ti}i21..n, that are equally spaced in time, with Dt = ti+1 � ti, and we will
define the residual at each observation point ti by:

Resi = Res(ti) = N(ti+1)� N(ti)exp (aDt) . (4.2)
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which are distributed following a stationary distribution. The problem is
much more complicated as we have to condition on the ages, which are con-
tinuous. We would then have to work in infinite dimension to recover a kind
of Markov property applying to the ages, but this is beyond our mathemati-
cal capabilities. In the end, we still obtain the same shape and time-evolution
of the residuals.
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FIGURE 4.2: Simulation: [A] Distribution of the residuals for
different times ti, with Gaussian fit in red. The stars indicate a
p-value p < 0.05 in the Kolmogorov-Smirnov test for normal-
ity. [B] Mean of the residuals as a function of time. [C] Variance
of the residuals as a function of time, in log scale. The black
dashed line has a slope a. The simulation is the one already de-
scribed in the previous chapter, for the full E. coli experimental

parameters and l = 0.75 (1000 traps).

We can check that these properties are verified on the Bellman-Harris sim-
ulations, directly on a full simulation of the growth of E. coli, with an initial
Poisson distribution (l = 0.75) and the division times changing with the
generation, as measured in the previous chapter. The results are presented
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Poisson distribution (l = 0.75) and the division times changing with the
generation, as measured in the previous chapter. The results are presented
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We can check that these properties are verified on the Bellman-Harris sim-
ulations, directly on a full simulation of the growth of E. coli, with an initial
Poisson distribution (l = 0.75) and the division times changing with the
generation, as measured in the previous chapter. The results are presented
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fit then the one with the bigger individual variability. This is due to a syn-
chronicity effect: as the variability of division times is very low, all the cells
divide more or less at the same time. A bad choice of Dt can then lead to a
very big value for the residual, as shown in red on the graph. To avoid this,
we can see that the only possibility is to take a time step Dt that is equal to a
multiple of the period of synchronicity of the cells, as for instance Dt2 on the
graph. This period is of course the mean division time of the cells t0, which
can be approximated by t0 ⇡ log(2)/a, see Chapter 3.

To check these intuitive guesses, we can compare the variance of the resid-
uals on different Bellman-Harris simulations, with the same t0 but varying
cvµ, for two values of the time step Dt. If we take a time step that is equal
to t0, the variance of the residuals are straight lines with a slope close to
a ⇡ log(2)/t0, and the bigger cvµ, the bigger the variance of the residuals
(Fig. 4.4[B]). At the opposite, if we take a different time step, for instance
here Dt = t0/2, we get completely different results (Fig. 4.4[A]). For small
cvµ, because of the synchronicity problems, the slope of the variance of the
residuals is not equal to a any more. For larger cvµ, the variance of the resid-
uals is not very sensitive to cvµ, which is not good for the inference problem.
Moreover, the variance of the residuals is bigger for small cvµ, which is not
intuitive at first sight, and is also not good for the backwards inference.

FIGURE 4.4: Variance of the residuals (log scale) for two values
of the time step Dt, Dt = t0/2 [Left] and Dt = t0 [Right], and
varying cvµ 2 [0.05, 0.4]. The parameters for the simulation are
t0 = 21 min, 2000 droplets in each simulation, N0 = 1. The

black dashed line indicates the slope a = log(2)/t0.

As the variance of the residuals evolves with time with an exponential
rate a, the ratio of this variance to the mean number of cells hNi is a constant,
and this ratio is directly linked to the variability of the division times of the
cells. If we choose a good Dt, as explained above, this ratio evolves almost
linearly with cvµ, see Fig. 4.5[A], which makes it a very good candidate as
the quantity to use for the inference of cvµ.

Another question that arises from this choice is how close to t0 do we
have to choose Dt if we want the inference to work ? The answer can be
read on Fig. 4.5[A], where Dt was varied around the value t0. For small

Residuals - simulations
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FIGURE 4.6: Histogram of the residuals, in a typical experiment
(same as Chapter 2, E. coli in droplets of LB medium), at differ-
ent time points, with a time step such that kDt ⇡ t0 (k = 4),
with Gaussian fit (red). The stars indicate a p-value p < 0.05 in

the Kolmogorov-Smirnov test for normality.

found in Appendix D. To summarize, the existence of an experimental noise
does affect the residuals. However, it does not account for the slope decrease
that we have mentioned. Indeed, if we take into account the heterogeneity
of the fluorescence, we find that the variance of the residuals is increased by
a constant factor, but its rate of growth is unchanged. If we consider an ad-
ditive noise, the exponential rate of growth of the variance of the residuals
is indeed lowered for a specific time-window that could match the one of
the experiments. However, the fact that the decrease in the exponential rate
of growth of the variance is reproducible for different bacterial strains and
settings of the camera makes us doubt that an additive noise could be re-
sponsible. Moreover, the measurement noise was found to be multiplicative
in Chapter 2. Finally, a multiplicative noise increases the exponential rate of
growth of the variance instead of decreasing it.

We then have to try to find another reason to account for the deviation of
the variance of the experimental residuals from the theory mentioned in the
previous paragraph.
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FIGURE 4.7: Variance of the residuals for three independent
growth experiments on chip. Experimental conditions: [A] E.
coli in LB (same experiment as Chapter 2), [B] same strain, same
medium, but different settings of the camera [C] B. subtilis in
LB (same experiment as in 3). Top line: Variance of the experi-
mental residuals (log scale,blue) as function of time, with linear
fit in orange. Bottom line: same, but divided by the mean of the

fluorescence signal.

4.3.3 Experimental sampling

If the noise or the heterogeneity of the fluorescence are not enough to explain
the behavior of the experimental residuals, there is something else that dif-
fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
in exponential phase if and only if Fluo(ti) is between the limits of detection
and saturation, which are set once and for all for every droplet. We can do the
same thing in the simulations, setting for instance N = 100 and N = 2500 as
the lower and upper limits for the computation of the residuals (Fig. 4.8[A]).
The residuals seem to behave very closely to what happens in the experi-
ments: they are still close to being Gaussian (Fig. 4.8[B]), and their variance
increases exponentially with time (Fig. 4.8[C]), but its rate of growth is lower
than the growth rate of the bacteria, which causes the ratio of the variance of
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4.3.3 Experimental sampling

If the noise or the heterogeneity of the fluorescence are not enough to explain
the behavior of the experimental residuals, there is something else that dif-
fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
in exponential phase if and only if Fluo(ti) is between the limits of detection
and saturation, which are set once and for all for every droplet. We can do the
same thing in the simulations, setting for instance N = 100 and N = 2500 as
the lower and upper limits for the computation of the residuals (Fig. 4.8[A]).
The residuals seem to behave very closely to what happens in the experi-
ments: they are still close to being Gaussian (Fig. 4.8[B]), and their variance
increases exponentially with time (Fig. 4.8[C]), but its rate of growth is lower
than the growth rate of the bacteria, which causes the ratio of the variance of
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and saturation, which are set once and for all for every droplet. We can do the
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fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
in exponential phase if and only if Fluo(ti) is between the limits of detection
and saturation, which are set once and for all for every droplet. We can do the
same thing in the simulations, setting for instance N = 100 and N = 2500 as
the lower and upper limits for the computation of the residuals (Fig. 4.8[A]).
The residuals seem to behave very closely to what happens in the experi-
ments: they are still close to being Gaussian (Fig. 4.8[B]), and their variance
increases exponentially with time (Fig. 4.8[C]), but its rate of growth is lower
than the growth rate of the bacteria, which causes the ratio of the variance of

92 Chapter 4. Following individual trajectories: the residuals

140 160 180 200
Time (min)

4

6

8

10

12

14
#10-4

FIGURE 4.7: Variance of the residuals for three independent
growth experiments on chip. Experimental conditions: [A] E.
coli in LB (same experiment as Chapter 2), [B] same strain, same
medium, but different settings of the camera [C] B. subtilis in
LB (same experiment as in 3). Top line: Variance of the experi-
mental residuals (log scale,blue) as function of time, with linear
fit in orange. Bottom line: same, but divided by the mean of the

fluorescence signal.

4.3.3 Experimental sampling
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fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
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growth experiments on chip. Experimental conditions: [A] E.
coli in LB (same experiment as Chapter 2), [B] same strain, same
medium, but different settings of the camera [C] B. subtilis in
LB (same experiment as in 3). Top line: Variance of the experi-
mental residuals (log scale,blue) as function of time, with linear
fit in orange. Bottom line: same, but divided by the mean of the

fluorescence signal.

4.3.3 Experimental sampling

If the noise or the heterogeneity of the fluorescence are not enough to explain
the behavior of the experimental residuals, there is something else that dif-
fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
in exponential phase if and only if Fluo(ti) is between the limits of detection
and saturation, which are set once and for all for every droplet. We can do the
same thing in the simulations, setting for instance N = 100 and N = 2500 as
the lower and upper limits for the computation of the residuals (Fig. 4.8[A]).
The residuals seem to behave very closely to what happens in the experi-
ments: they are still close to being Gaussian (Fig. 4.8[B]), and their variance
increases exponentially with time (Fig. 4.8[C]), but its rate of growth is lower
than the growth rate of the bacteria, which causes the ratio of the variance of
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the residuals to the mean number of cells to be time-decreasing (Fig. 4.8[D]).

FIGURE 4.8: Residuals in a simulation of E. coli (same as
Fig. 4.2) when we set fake limits for the detection and satura-
tion, to mimic the experimental situation. [A] Growth curves
as a function of time, in log scale, with the lower and upper
limit in black. [B] Histograms of the residuals, with Gaussian
fits, for several time points. [C] Variance of the residuals (log
scale,blue) as function of time, with linear fit in orange. [D]
Variance of the residuals divided by the mean number of cells
as a function of time, in log scale. This ratio decreases with time

instead of being constant.

Thus just by sampling the simulated data like we do in the experiments,
we can see that this sampling causes the variance of the residuals to deviate
from the theory. However, we cannot completely remove this sampling in
the experimental part, because we have to study only the droplets in the
exponential phase. We are going to see in the next section a method to keep
the sampling but recover the correct exponential growth of the variance.
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The results are plotted on Fig. 4.10. First of all, the instantaneous growth
rate Fig. 4.10[A] does converge to a constant value, but it is slightly lower
than the one expected by the theory of Bellman and Harris. This is due to the
numerical error in the simulation, and the error is below 2%. As we can see
on Fig. 4.10[B], the binned residuals are Gaussian, and their mean is close to
zero (Fig. 4.10[C]). If we look at the variance as a function of the N-bin value
(Fig. 4.10[D]), we do obtain a straight line with the desired slope, which is 1.

FIGURE 4.10: Residuals in a simulation of E. coli (same as
Fig. 4.2), binned by N. We have here 20 bins, logarithmically
spaced between Ndet = 100 and Nsat = 2500. [A] Mean In-
stantaneous Growth Rate, with the Belmman-Harris theoretical
value (orange, see chapter 3) and the growth rate of the sim-
ulated mean. [B] Histograms of the residuals for 4 bins, with
Gaussian fit (red). The stars indicate a p-value p < 0.05 in the
Kolmogorov-Smirnov test for normality. [C] Residuals in each
bin and their mean as a function of Nj (log scale for Nj). [D]
Variance of the residuals (log scale,blue) as function of Nj, with

a black line indicating the slope 1 (log-log scale).

Hence, we have recovered the theoretical rate of growth of the variance,
even with a sampling of the trajectories between a detection and saturation
limit. We can check now that this variance is still suitable for inference of the
variability of the individual division times: we want the variance to depend
strongly on the variability on the division times, as on Fig. 4.3. The results

Residuals — binning by N —  simulations
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FIGURE 4.14: [A] Residuals obtained by eq. (4.31) in a typical
E. coli experiment (same as previously), binned by the fluo-
rescence value, with mean value for each bin (dark bold line).
[B] Histograms of the residuals for 6 bins, with Gaussian fit
(red). The stars indicate a p-value p < 0.05 in the Kolmogorov-
Smirnov test for normality. [C] Variance of the residuals in each
bin. The dark line indicates a slope 1. [D] Variance of the resid-

uals in each bin divided by the fluorescence value of the bin.

Then if we compute the ratio of variance to the fluorescence, we get the
same proportionality:

Var
�

ResFluo�

Fluo
= a f

Var (ResN)
N

. (4.35)

Therefore, if we want to use the residuals that we have computed to read
the value of cvµ on the curve of Fig. 4.11[B], we have to know precisely the
value of a f . Unfortunately, as we have seen in Chapter 2, it is very difficult
to accurately estimate the value of a f .

If we use for instance the value that we have inferred using the Bellman-
Harris model, we have a f ⇡ 7 · 10�4. If we compute the mean ratio of the
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FIGURE 4.14: [A] Residuals obtained by eq. (4.31) in a typical
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rescence value, with mean value for each bin (dark bold line).
[B] Histograms of the residuals for 6 bins, with Gaussian fit
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are plotted on Fig. 4.11. On the left-side graph, we can see that the variance
mostly behaves as predicted, except for very low cvµ. This is due once again
to the synchronicity of the cells in those cases, and we are not going to focus
on them as they are not likely to happen in real experiments with bacteria
(see Fig. 3.13). If we focus on cvµ � 0.15, then the variance of the residuals
of each bin behaves as predicted (Var (Res)j µ Nj). We can rescale the vari-
ance by dividing it it by the bin value Nj, and we obtain a ratio that does not
depend on j any more. The value of this rescaled variance strongly depends
on the microscopic coefficient of variation cvµ, which gives us a nice curve
to infer cvµ from the computed variance of the residuals (Fig. 4.11[B]). This
inference curve, contrary to what we obtained in the previous Chapter, is al-
most insensitive to the initial conditions (Poisson distribution, different first
generation). It is then a very good candidate for the inference of cvµ in our
experimental conditions.

FIGURE 4.11: Variance of the residuals binned by N, when
varying cvµ: same simulations as on Fig. 4.3, with 30 bins loga-
rithmically spaced between Ndet = 10 and Nsat = 10000. [A]
Variance of each bin as a function of the bin value (log-log
scale). The black dotted line indicates the line y = x. [B] Mean
value of Var (Res)j /Nj as a function of the microscopic coef-
ficient of variation cvµ, for cvµ 2 [0.15, 0.4], for the Bellman-
Harris classical case (blue circles), and adding a Poisson distri-
bution (orange stars), a different first generation-time (yellow

diamonds) or both (purple squares)

Summary of the inference method

If we sum up what we have obtained until now, we can describe an inference
method for the microscopic variability of the division times based on the
residuals, for given observation points ti spaced by Dt:

1. Define for all curves a detection and saturation limit Ndet and Nsat.

2. Fit all curves in the exponential phase to get the growth rate a, and thus
an approximate value of t0 ⇡ log(2)

a .

Residuals — one more problem



4.4. Binning the residuals by the number of cells 97

are plotted on Fig. 4.11. On the left-side graph, we can see that the variance
mostly behaves as predicted, except for very low cvµ. This is due once again
to the synchronicity of the cells in those cases, and we are not going to focus
on them as they are not likely to happen in real experiments with bacteria
(see Fig. 3.13). If we focus on cvµ � 0.15, then the variance of the residuals
of each bin behaves as predicted (Var (Res)j µ Nj). We can rescale the vari-
ance by dividing it it by the bin value Nj, and we obtain a ratio that does not
depend on j any more. The value of this rescaled variance strongly depends
on the microscopic coefficient of variation cvµ, which gives us a nice curve
to infer cvµ from the computed variance of the residuals (Fig. 4.11[B]). This
inference curve, contrary to what we obtained in the previous Chapter, is al-
most insensitive to the initial conditions (Poisson distribution, different first
generation). It is then a very good candidate for the inference of cvµ in our
experimental conditions.

FIGURE 4.11: Variance of the residuals binned by N, when
varying cvµ: same simulations as on Fig. 4.3, with 30 bins loga-
rithmically spaced between Ndet = 10 and Nsat = 10000. [A]
Variance of each bin as a function of the bin value (log-log
scale). The black dotted line indicates the line y = x. [B] Mean
value of Var (Res)j /Nj as a function of the microscopic coef-
ficient of variation cvµ, for cvµ 2 [0.15, 0.4], for the Bellman-
Harris classical case (blue circles), and adding a Poisson distri-
bution (orange stars), a different first generation-time (yellow

diamonds) or both (purple squares)

Summary of the inference method

If we sum up what we have obtained until now, we can describe an inference
method for the microscopic variability of the division times based on the
residuals, for given observation points ti spaced by Dt:

1. Define for all curves a detection and saturation limit Ndet and Nsat.

2. Fit all curves in the exponential phase to get the growth rate a, and thus
an approximate value of t0 ⇡ log(2)

a .

Residuals — one more problem



1 second 70 minutes

120 µm

What is the proportionality 
coefficient between 

fluorescence and number 
of cells? 

What is the variability in 
fluorescence between 

cells? 

Residuals — one more problem



From population to single cell

• In theory, we can infer single-cell division parameters from macroscopic 
parameters on population sizes


• Compute the residuals


• Experimentally: work in progress
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Thank you!


