

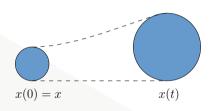
# GROWTH-FRAGMENTATION AND QUASI-STATIONARY METHODS

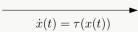
Denis Villemonais Alex Watson

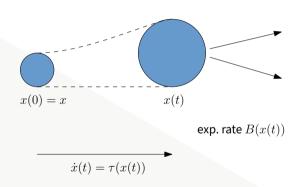
BioHasard, 28 May 2021

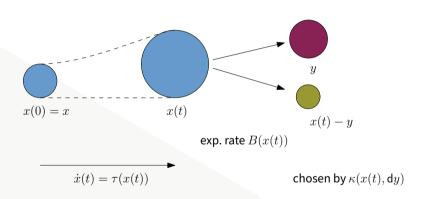


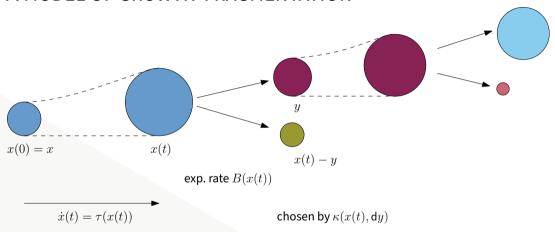
x(0) = x

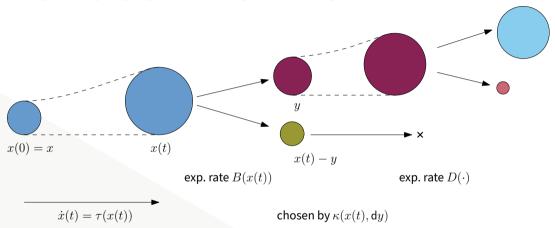


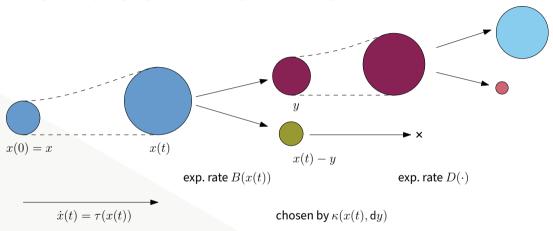








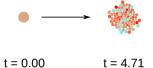




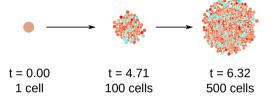
List sizes at time t:  $\mathbf{Z}(t) = (Z_u(t): u \in U)$ 

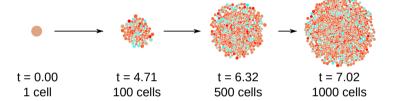
t = 0.00 1 cell

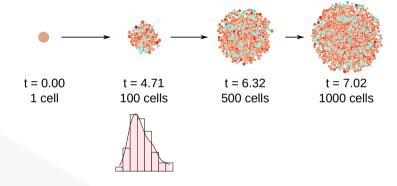
1 cell

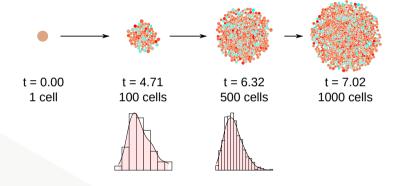


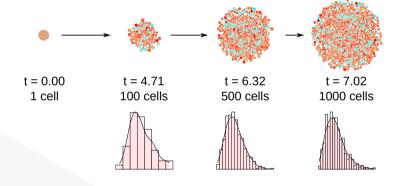
100 cells

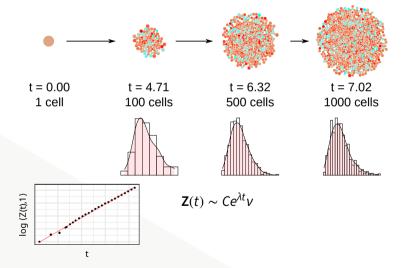












Look at  $T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$  (formally)

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f$$
 ...where  $k(x, \mathrm{d} y) = 2B(x) \frac{\kappa(x, \mathrm{d} y) + \kappa(x, x - \mathrm{d} y)}{2}$ , and  $K(x) = B(x) + D(x)$ .

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

#### **Questions**

- Existence and uniqueness of such  $T_t$ ? (For which coefficients; for which f?)
- Long term behaviour:  $T_t f(x) \sim e^{\lambda t} h(x) \int f(y) v(dy)$ ? Rate?

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

#### **Existing approaches**

Spectral: find  $Ah = \lambda h$ ,  $vA = \lambda v$  and use entropy methods

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

#### **Existing approaches**

- Spectral: find  $Ah = \lambda h$ ,  $vA = \lambda v$  and use entropy methods
- When h is known, make connection with an Markov process and use its stationary distribution

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

#### **Existing approaches**

- Spectral: find  $Ah = \lambda h$ ,  $vA = \lambda v$  and use entropy methods
- When h is known, make connection with an Markov process and use its stationary distribution
- 'Harris-type theorem for non-conservative semigroups': Lyapunov function approach, Bansaye et al. (2019+)

Look at 
$$T_t f(x) = \mathbb{E}_x \left[ \sum_u f(Z_u(t)) \right]$$
 (formally) 
$$\partial_t T_t f(x) = T_t \mathcal{A} f(x)$$
 
$$\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) \, k(x, \mathrm{d} y) - K(x) f(x), \quad \text{for suitable } f(x) = t(x) f'(x)$$

#### Heuristic connection with another equation

If 
$$T_t f(x) = \int_0^\infty u_t(x, y) dy$$
 and  $k(x, dy) = k(x, y) dy$ , then

$$\partial_t u_t(x,y) + \partial_y (\tau(y) u_t(x,y)) = \int_y^\infty f(z) k(z,y) \mathrm{d}z - K(y) f(y).$$

# **OUR APPROACH**

Try to link to a killed Markov process

#### **OUR APPROACH**

- Try to link to a killed Markov process
- Study the quasi-stationary distribution (QSD) ('stationary after conditioning on survival')

#### **OUR APPROACH**

- Try to link to a killed Markov process
- Study the quasi-stationary distribution (QSD) ('stationary after conditioning on survival')
- Find conditions for existence of the process and its QSD, and link back to desired semigroup *T*



Fix  $\alpha, \beta \in \mathbb{R}$  and let

$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}} a \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}} \beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

Fix  $\alpha, \beta \in \mathbb{R}$  and let

$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}} a \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}} \beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

Let  $\mathcal{L}f = \frac{1}{V}\mathcal{A}(fV) - bf$  where  $b = \sup_{x>0} \left(\frac{1}{V(x)}\mathcal{A}V(x)\right)$ 

Fix  $\alpha, \beta \in \mathbb{R}$  and let

$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}} a \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}} \beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

- Let  $\mathcal{L}f = \frac{1}{V}\mathcal{A}(fV) bf$  where  $b = \sup_{x>0} \left(\frac{1}{V(x)}\mathcal{A}V(x)\right)$
- L1 ≤ 0; it generates a killed Markov process

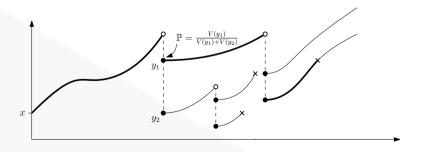
$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x \left[ f(y) - f(x) \right] k_V(x, dy) - q(x)f(x),$$

$$\text{growth rate} \text{jump rate} \text{killing rate}$$

- $\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x \left[ f(y) f(x) \right] k_V(x, dy) q(x)f(x),$  growth rate jump rate

- $\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x \left[ f(y) f(x) \right] k_V(x, dy) q(x)f(x),$  growth rate jump rate killing rate
- $\qquad \qquad \text{``e}^{-bt} \frac{1}{V(x)} \mathbb{E}_x \left[ \sum_u f(Z_u(t)) V(Z_u(t)) \right] \text{'`} = \text{e}^{-bt} \frac{1}{V(x)} T_t(fV)(x) = \mathbb{E}_x [f(X_t)]$

- $\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x \left[ f(y) f(x) \right] k_V(x, dy) q(x)f(x),$  growth rate jump rate killing rate
- $\qquad \qquad \text{``e}^{-bt} \frac{1}{V(x)} \mathbb{E}_x \left[ \sum_u f(Z_u(t)) V(Z_u(t)) \right] \text{'`} = e^{-bt} \frac{1}{V(x)} T_t(fV)(x) = \mathbb{E}_x [f(X_t)]$



## LEMMA

Assume, for all M > 0,

$$\sup_{x\in(0,M)}k_V(x,(0,x])<\infty \text{ and } \limsup_{x\to\infty}\left[k_V(x,(0,x])-K(x)\right]<\infty.$$

### LEMMA

Assume, for all M > 0,

$$\sup_{x\in(0,M)}k_V(x,(0,x])<\infty \text{ and } \limsup_{x\to\infty}\bigl[k_V(x,(0,x])-K(x)\bigr]<\infty.$$

**Then** there is a Markov process X on  $E = (0, \infty) \cup \{\partial\}$  with

$$Q_t f(x) := \mathbb{E}_x [f(X_t)] = f(x) + \int_0^t \mathbb{E}_x [\mathcal{L}f(X_s)] ds$$

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)] k_V(x, dy) + [f(\partial) - f(x)] q(x), \quad \mathcal{L}f(\partial) = 0,$$

for  $f: E \to \mathbb{R}$  such that  $f|_{(0,\infty)}$  compactly supported and suitably differentiable.

### LEMMA

Assume, for all M > 0,

$$\sup_{x\in(0,M)}k_V(x,(0,x])<\infty \text{ and } \limsup_{x\to\infty}\bigl[k_V(x,(0,x])-K(x)\bigr]<\infty.$$

Then there is a Markov process X on  $E = (0, \infty) \cup \{\partial\}$  with

$$Q_t f(x) := \mathbb{E}_x [f(X_t)] = f(x) + \int_0^t \mathbb{E}_x [\mathcal{L}f(X_s)] ds$$

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)] k_V(x, dy) + [f(\partial) - f(x)] q(x), \quad \mathcal{L}f(\partial) = 0,$$

for  $f: E \to \mathbb{R}$  such that  $f|_{(0,\infty)}$  compactly supported and suitably differentiable. **Moreover**, Q is the unique semigroup with these properties.

Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...

- Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...
- Show no accumulation of jumps: uses  $\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty$ , no build-up of jumps toward zero

- Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...
- Show no accumulation of jumps: uses  $\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty$ , no build-up of jumps toward zero
- A bit of legwork yields X, unique solution of martingale problem

- Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...
- Show no accumulation of jumps: uses  $\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty$ , no build-up of jumps toward zero
- A bit of legwork yields X, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup

- Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...
- Show no accumulation of jumps: uses  $\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty$ , no build-up of jumps toward zero
- A bit of legwork yields X, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup
  - Show any solution does not approach ∞ or 0 (supermartingale argument)

- Construction: follow the ODE  $\dot{x}(t) = \tau(x(t))$ , jump at rate  $k_V$ , follow ODE from new position...
- Show no accumulation of jumps: uses  $\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty$ , no build-up of jumps toward zero
- A bit of legwork yields X, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup
  - Show any solution does not approach ∞ or 0 (supermartingale argument)
  - Compare solutions with solutions of martingale problem (a priori not necessarily the same!)

Let

$$\begin{split} \mathcal{A}f(x) &= \tau(x)f'(x) + \int_0^x f(y)k(x,\mathrm{d}y) - K(x)f(x) \\ \mathcal{D}(\mathcal{A}) &= \{f\colon (0,\infty)\to\mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}. \end{split}$$

Let

$$\mathcal{A}f(x) = \tau(x)f'(x) + \int_0^x f(y)k(x, \mathrm{d}y) - K(x)f(x)$$

$$\mathcal{D}(\mathcal{A}) = \{f \colon (0, \infty) \to \mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}.$$

Then there exists a unique semigroup T such that

$$T_t f(x) = f(x) + \int_0^t T_s \mathcal{A} f(x) \, ds, \quad f \in \mathcal{D}(\mathcal{A}),$$

Let

$$\mathcal{A}f(x) = \tau(x)f'(x) + \int_0^x f(y)k(x, \mathrm{d}y) - K(x)f(x)$$

$$\mathcal{D}(\mathcal{A}) = \{f \colon (0, \infty) \to \mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}.$$

Then there exists a unique semigroup T such that

$$T_t f(x) = f(x) + \int_0^t T_s \mathcal{A} f(x) \, \mathrm{d}s, \quad f \in \mathcal{D}(\mathcal{A}),$$

and

$$T_t f(x) = e^{bt} V(x) \mathbb{E}_x [f(X_t)/V(X_t)].$$

'Unbias the spine motion and add the branching back in'.



## QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at  $T_{\partial}$ , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{X}(X_{t} \in dy \mid T_{\partial} > t) \to v^{X}(dy),$$

at exponential rate.

## QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at  $T_{\partial}$ , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{X}(X_{t} \in \mathsf{d}y \mid T_{\partial} > t) \to v^{X}(\mathsf{d}y),$$

at exponential rate.

 $\triangleright v^{\chi}$  is the quasi-stationary distribution.

## QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at  $T_{\partial}$ , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{X}(X_{t} \in \mathsf{d}y \mid T_{\partial} > t) \to v^{X}(\mathsf{d}y),$$

at exponential rate.

- $\triangleright v^X$  is the quasi-stationary distribution.
- X is killed at random rate, our T has branching at random rate...

In addition to our assumption about  $k_V$ , assume that

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d}y > 0, \quad \text{for } x > 0,$$

In addition to our assumption about  $k_V$ , assume that

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d}y > 0, \quad \text{for } x > 0,$$

that there is a measure  $\mu$  and a nonempty interval I with

$$k(x, \cdot) \ge \mu$$
, for  $x \in I$ ,

In addition to our assumption about  $k_V$ , assume that

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d} y > 0, \quad \text{ for } x > 0,$$

that there is a measure  $\mu$  and a nonempty interval I with

$$k(x,\cdot) \ge \mu$$
, for  $x \in I$ ,

and the existence of Lyapunov functions  $\psi$ ,  $\phi$  such that

$$\begin{split} \mathcal{A}\psi(x) &\leq \lambda_1 \psi(x) + C\mathbb{1}_L(x), \\ \mathcal{A}\phi(x) &\geq \lambda_2 \phi(x), \end{split}$$

with *L* compact,  $\inf \psi/V > 0$ ,  $\sup \phi/V < \infty$ ,  $\inf \tau \phi' > -\infty$ , and  $\phi(x)/\psi(x) \to 0$  as  $x \to 0, \infty$ .

In addition to our assumption about  $k_V$ , assume that

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d} y > 0, \quad \text{for } x > 0,$$

that there is a measure  $\mu$  and a nonempty interval I with

$$k(x, \cdot) \ge \mu$$
, for  $x \in I$ ,

and the existence of Lyapunov functions  $\psi$ ,  $\phi$  such that

$$\mathcal{A}\psi(x) \leq \lambda_1 \psi(x) + C \mathbb{1}_L(x),$$
 
$$\mathcal{A}\phi(x) \geq \lambda_2 \phi(x),$$

with *L* compact,  $\inf \psi/V > 0$ ,  $\sup \phi/V < \infty$ ,  $\inf \tau \phi' > -\infty$ , and  $\phi(x)/\psi(x) \to 0$  as  $x \to 0, \infty$ . **Then...** 

...there exist  $\lambda \in \mathbb{R}$ ,  $\nu$  a measure, h a function and  $\gamma > 0$ , such that

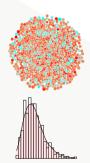
$$\left\| e^{-\lambda t} T_t f(x) - h(x) \int f \mathrm{d}v \right\|_{TV} \le C e^{-\gamma t} \psi(x)$$

with  $T_t h = e^{\lambda t} h$  and  $v T_t = e^{\lambda t} v$ .

...there exist  $\lambda \in \mathbb{R}$ ,  $\nu$  a measure, h a function and  $\gamma > 0$ , such that

$$\left\| e^{-\lambda t} T_t f(x) - h(x) \int f dv \right\|_{TV} \le C e^{-\gamma t} \psi(x)$$

with  $T_t h = e^{\lambda t} h$  and  $v T_t = e^{\lambda t} v$ .





"
$$\mathbb{E}\mathbf{Z}(t) \sim e^{\lambda t} h(x) v$$
"

Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put  $\alpha = 0$

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put  $\alpha = 0$
- Very specific coefficients: if

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put a = 0
- Very specific coefficients: if
  - p(dr) = 2dr (uniform binary repartition of mass),

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put a = 0
- Very specific coefficients: if
  - p(dr) = 2dr (uniform binary repartition of mass),
  - $\tau(x) = O(x) \text{ as } x \to \infty,$

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put a = 0
- Very specific coefficients: if
  - p(dr) = 2dr (uniform binary repartition of mass),
  - $\tau(x) = O(x) \text{ as } x \to \infty$
  - and  $(3 + \sqrt{8}) \lim \sup_{x \to \infty} \frac{\tau(x)}{x} < \lim \inf_{x \to \infty} K(x)$ ,

- Assume  $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$  ('self-similarity'),  $\int rp(dr) = 1$  (conservation of mass),  $\int_0^1 \frac{dy}{\tau(y)} < \infty$  (entrance from mass 0)
- Can take  $\phi(x) = x$ , then  $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$
- Can take  $\psi(x) = V(x)$  and put a = 0
- Very specific coefficients: if
  - p(dr) = 2dr (uniform binary repartition of mass),
  - $\tau(x) = O(x) \text{ as } x \to \infty,$
  - and  $(3 + \sqrt{8}) \lim \sup_{x \to \infty} \frac{\tau(x)}{x} < \lim \inf_{x \to \infty} K(x)$ ,

then result holds.

# **PERSPECTIVES**

# PERSPECTIVES: COMPUTATION

► Fleming-Viot process

## PERSPECTIVES: COMPUTATION

- ► Fleming-Viot process
  - Take N particles running the killed process

### Perspectives: computation

- ► Fleming-Viot process
  - Take N particles running the killed process
  - ▶ When one dies, reinstate it at the average position of remaining particles

### Perspectives: computation

- ► Fleming-Viot process
  - Take N particles running the killed process
  - ▶ When one dies, reinstate it at the average position of remaining particles
  - Should approach QSD

### Perspectives: computation

- ► Fleming-Viot process
  - Take N particles running the killed process
  - ▶ When one dies, reinstate it at the average position of remaining particles
  - Should approach QSD
- Now to find h and λ?

# Perspectives: computation

- ► Fleming-Viot process
  - ► Take N particles running the killed process
  - When one dies, reinstate it at the average position of remaining particles
  - Should approach QSD
- Now to find h and λ?
  - Analogy with Bertoin and Watson (2018) suggests that if

$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) \, \mathrm{d}s},$$

where  $T_x$  is hitting time of x, then  $\lambda - b$  is unique solution to L(p) = 1

# Perspectives: computation

- ► Fleming-Viot process
  - Take N particles running the killed process
  - When one dies, reinstate it at the average position of remaining particles
  - Should approach QSD
- Now to find h and λ?
  - Analogy with Bertoin and Watson (2018) suggests that if

$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) ds},$$

where  $T_x$  is hitting time of x, then  $\lambda - b$  is unique solution to L(p) = 1

The naive Monte Carlo estimator (Cornett 2021) has very high variance

# Perspectives: computation

- ► Fleming-Viot process
  - Take N particles running the killed process
  - When one dies, reinstate it at the average position of remaining particles
  - Should approach QSD
- Now to find h and λ?
  - Analogy with Bertoin and Watson (2018) suggests that if

$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) ds},$$

- where  $T_x$  is hitting time of x, then  $\lambda b$  is unique solution to L(p) = 1
- ▶ The naive Monte Carlo estimator (Cornett 2021) has very high variance
- ► How to handle this?

# PERSPECTIVES: EXTENSIONS

Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )

# PERSPECTIVES: EXTENSIONS

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - ► Horton and Watson (2021+): perturbed Lévy-type coefficients

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - ► Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...
  - cf. Laurençot and Walker (2021)

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...
  - cf. Laurençot and Walker (2021)
- Attraction to mass 0

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...
  - cf. Laurençot and Walker (2021)
- Attraction to mass 0
  - By small jumps: what if  $k_V(x, (0, x])$  is unbounded near 0?

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...
  - cf. Laurençot and Walker (2021)
- Attraction to mass 0
  - By small jumps: what if  $k_V(x, (0, x])$  is unbounded near 0?
  - By diffusion part with absorption?

- Say something about  $\mathbf{Z}(t)$  itself (as  $t \to \infty$ )
  - ▶ Bertoin and Watson (2020): more restrictive conditions
  - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
  - Existence and uniqueness get easier!
  - Need to handle behaviour at zero carefully...
  - cf. Laurençot and Walker (2021)
- Attraction to mass 0
  - By small jumps: what if  $k_V(x, (0, x])$  is unbounded near 0?
  - By diffusion part with absorption?
  - In principle, QSD can handle this...

# PERSPECTIVES: RELATED MODELS - TYPED CELLS

▶ Old and new pole cells – Cloez, da Saporta and Roget (2020+)

# PERSPECTIVES: RELATED MODELS - TYPED CELLS

- ▶ Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)

# PERSPECTIVES: RELATED MODELS - TYPED CELLS

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - It is preferable (for  $\lambda$ ) to have **distinct** growth rates for old and new cells

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - It is preferable (for  $\lambda$ ) to have **distinct** growth rates for old and new cells
  - Could one approach this via spine and optimal control of Lévy-type processes?

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - lt is preferable (for  $\lambda$ ) to have **distinct** growth rates for old and new cells
  - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - It is preferable (for λ) to have distinct growth rates for old and new cells
  - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)
  - Embed CSBP (parasite population) and divide it when cell divides (growth-fragmentation)

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - It is preferable (for  $\lambda$ ) to have **distinct** growth rates for old and new cells
  - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)
  - Embed CSBP (parasite population) and divide it when cell divides (growth-fragmentation)
  - Reminiscent of the viral load in populations from last week...

- Old and new pole cells Cloez, da Saporta and Roget (2020+)
  - At division, one daughter cell is 'old', one is 'new' (after E. coli)
  - Type influences growth rate; division unaffected
  - It is preferable (for λ) to have distinct growth rates for old and new cells
  - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)
  - Embed CSBP (parasite population) and divide it when cell divides (growth-fragmentation)
  - Reminiscent of the viral load in populations from last week...
- 'A spatially dependent fragmentation process' Callegaro and Roberts (2021+)

# PERSPECTIVES: APPLICATIONS

▶ Biologists can already tag cell lines and it may be possible with proteins as well

# Perspectives: Applications

- Biologists can already tag cell lines and it may be possible with proteins as well
- Can we tie spine-type approaches into this?

# PERSPECTIVES: APPLICATIONS

- Biologists can already tag cell lines and it may be possible with proteins as well
- Can we tie spine-type approaches into this?
- Infer the bias in how the tag is transferred to offspring?

# **FURTHER READING**



D. Villemonais and A. R. Watson Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine In preparation (working title)

# **FURTHER READING**



D. Villemonais and A. R. Watson Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine In preparation (working title)

Thank you!