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exp. rate B(z(t)) exp. rate D(+)

»
>

z(t) = 7(z(¢)) chosen by x(z(t), dy)

P> List sizes at time t: Z(t) = (Z,(t):u € U)
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P> When his known, make connection with an Markov process and use its stationary
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MEAN MEASURES
Look at T,f(x) = E, [X,, f(Z,(t))] (formally)
0 Tif (x) = T Af(x)
AF(X) = T (%) + /OX f(y) k(x,dy) — K(x)f(x), forsuitablef

Heuristic connection with another equation

If T.f(x) = [;° up(x, y)dy and k(x, dy) = k(x,y)dy, then

0g(3,Y) + 3, (T (%, ) = / F(2k(z,y)dz — K.
y
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OUR APPROACH

P> Tryto link to a killed Markov process

P> Study the quasi-stationary distribution (QSD) (‘stationary after conditioning on
survival’)

P> Find conditions for existence of the process and its QSD, and link back to desired
semigroup T
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P Fixa, B € Rand let

b dy ¥ dy
=09 (<t [ 5100 [ 55)

P Let £f = JA(fV) — bf where b = sup,.q (575 AV()
P rci=<o;it generates a killed Markov process
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P LE(x) = T )+ [X[F() = FO0]ky(x, dy) — g)f (x),

growth rate /Ajump rate /killing rate
P ..where k,(x,dy) = %k(x, dy)
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Assume, forallM > 0,

sup ky(x,(0,x]) < e and lim sup[ky(x, (0,x]) = K(x)| < .
xe(0,M) X—>00

Then there is a Markov process X on E = (0,0) U {0} with

¢
Qif (x) = E,[f(X)] = f(x) +/ E, [Lf(X,)]ds

0
Lﬁ@):ruvwxwlé'Vw>—faﬂkw&dyr+Vw)—fuﬂqum Lf(9) =0,

forf: E — R such that | ., compactly supported and suitably differentiable.
Moreover, Q is the unique semigroup with these properties.
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PROOF IDEAS

P> Construction: follow the ODE x(t) = T(x(t)), jump at rate ky, follow ODE from new
position...

P> Show no accumulation of jumps: uses SUPye(o.m) kv (X, (0,X]) < °0, no build-up of
jumps toward zero

P> Abit of legwork yields X, unique solution of martingale problem

P> Most difficult part: uniqueness of the semigroup

P> Show any solution does not approach = or 0 (supermartingale argument)
P> Compare solutions with solutions of martingale problem (a priori not necessarily
the same!)
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THEOREM
Let
AF(X) = TOOF' (X) + / " f(y)k(x, dy) — KOX)Ff(x)
D(A) = {f: (0,) —>OR suitably differentiable, compactly supported} U {V}.

Then there exists a unique semigroup T such that
t
Tif(x) = f(x) +/ T.Af(x)ds, f e D(A),
0

and
T,f(x) = P VOOE, [F(X)/V(X)].

‘Unbias the spine motion and add the branching back in’.



LONG-TERM BEHAVIOUR



QUASI-STATIONARY DISTRIBUTIONS

P> If X is a Markov process killed at T4, Champagnat and Villemonais (2018+) give criteria
for
P,X; € dy | T, > t) = V¥ (dy),

at exponential rate.

10



QUASI-STATIONARY DISTRIBUTIONS

P> If X is a Markov process killed at T;, Champagnat and Villemonais (2018+) give criteria
for
P,X; € dy | T, > t) = V¥ (dy),
at exponential rate.
P> " is the quasi-stationary distribution.

10



QUASI-STATIONARY DISTRIBUTIONS

P> If X is a Markov process killed at T;, Champagnat and Villemonais (2018+) give criteria
for
P, (X, € dy | Ty > t) - v (dy),
at exponential rate.
P> " is the quasi-stationary distribution.
P> Xiskilled at random rate, our T has branching at random rate...
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THEOREM

..there exist A € R, v a measure, h a function and y > 0, such that

||e‘Mth(x) —he) [ fdeTV < CeMy(x)

with T,h = ehand vT, = eMv.

log (Z(t)1)

“EZ(t) ~ eMh(x)v”

12
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of mass) /0 _ < oo (entrance from mass 0)
P Can take qb(x) = x, then A¢(x) = Xe(x)
P> Cantake y(x) = V(x)and puta =0
P> Very specific coefficients: if
P> p(dr) = 2dr (uniform binary repartition of mass),
} T(x) = O(X) as x — oo,
P and 3+ 1/8)lim SUPy o0 —2 T(X) < liminf,_ . K(x),
then result holds.
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P> The naive Monte Carlo estimator (Cornett 2021) has very high variance
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P> Bertoin and Watson (2020): more restrictive conditions

P> Horton and Watson (2021+): perturbed Lévy-type coefficients
P> Replace deterministic growth with diffusion

P> Existence and uniqueness get easier!
P> Need to handle behaviour at zero carefully...
P> cf. Laurencot and Walker (2021)

P> Attraction to mass 0

> By small jumps: what if k,(x, (0, x]) is unbounded near 0?
P> By diffusion part with absorption?
P> In principle, QSD can handle this...
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P> ‘A spatially dependent fragmentation process’ - Callegaro and Roberts (2021+)
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FURTHER READING

[4 D.Villemonais and A. R. Watson
Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine
In preparation (working title)
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Thank you!
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